• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists identify a novel strategy to fight viral infections and cancer in animal model

Bioengineer by Bioengineer
May 30, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WINSTON-SALEM, N.C. – May 30, 2019 – A potential therapeutic strategy to treat viral infection and boost immunity against cancer is reported in the May 30 online issue of the journal Cell.

The work, conducted by scientists at Wake Forest School of Medicine, found that boosting the body’s production of type 1 interferon helped clear viral infection and increased immunity against cancer by identifying a sensor involved in suppressing interferon production in an animal model.

Interferons are a group of signaling proteins made and released by host cells in response to the presence of several viruses. In a typical scenario, a virus-infected cell will release interferons causing nearby cells to heighten their anti-viral defenses.

Interferons also help the immune system fight cancer and may slow the growth of cancer cells.

The principal investigator of the study was Hui-Kuan Lin, Ph.D., professor of cancer biology at Wake Forest School of Medicine, part of Wake Forest Baptist Health.

In the study, Lin’s team discovered that RIG-I-like receptors (RLR) mediated interferon (IFN) production, which played a pivotal role in elevating host immunity for viral clearance and cancer immune surveillance. They reported that glycolysis, the first step in breaking down glucose to extract energy for cellular metabolism, was inactivated during RLR activity. That inactivation served as the key to turn on type I IFN production.

Using pharmacological and genetic approaches, the scientists showed that lactate reduction by lactate dehydrogenase A (LDHA) inactivation heightened type I IFN production to protect from viral infection in mice.

The study established a critical role of glycolysis-derived lactate in limiting RLR signaling and identified MAVS as a direct sensor of lactate, which functions to connect energy metabolism and innate immunity, Lin said.

Type I interferons (IFNs), produced by almost all type of cells, played a vital role in host defense against viral infection and cancer immunosurveillance, Lin said.

Lin’s team plans to conduct additional studies in other animal models in preparation for potential clinical trials.

###

This work was supported by Start-ups and The Endowment Fund of Anderson Discovery Professor for Cancer Research from Wake Forest School of Medicine; National Institutes of Health (NIH) grants R01CA182424 and R01CA193813; and NIH grants R01CA194094 and R01CA197178. The research team also acknowledges the support by the National Key Research and Development Program 2017YFA0503900, National Natural Science Foundation of China 31671413, and Beijing Nova Program Z161100004916147; and Major Program of National Natural Science Foundation of China 81790252.

Media Contact
Marguerite Beck
[email protected]
http://dx.doi.org/10.1016/j.cell.2019.05.003

Tags: Cell BiologyMedicine/Health
Share13Tweet7Share2ShareShareShare1

Related Posts

Ambient Documentation Technologies Alleviate Physician Burnout and Rekindle Joy in Medical Practice

Ambient Documentation Technologies Alleviate Physician Burnout and Rekindle Joy in Medical Practice

August 21, 2025
blank

Decoding mTORC1’s Dynamic Amino Acid Control

August 21, 2025

Wearable Devices Improve Parkinson’s Medication Adjustments: Trial

August 21, 2025

How Cancer Affects the Accuracy of Forensic DNA Methylation Age Estimation

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

The Evolution of Metalenses: From Single Devices to Integrated Arrays

Uncovering Molecular Connections in HIV Comorbidities: Insights from a Big Data Study

Hidden Genetic Costs: Inbreeding and Dominance Effects

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.