• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

3D printed artificial corneas similar to human ones

Bioengineer by Bioengineer
May 28, 2019
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Professor Dong-Woo Cho and his research team replicated human corneal structure and fabricated a transparent cornea with the lattice pattern

IMAGE

Credit: POSTECH

When a person has a severely damaged cornea, a corneal transplant is required. However, there are 2,000 patients waiting for the cornea donation in the country as of 2018 and they wait for 6 or more years on average for the donation. For this reason, many scientists have put their efforts in developing an artificial cornea. The existing artificial cornea uses recombinant collagen or is made of chemical substances such as synthetic polymer. Therefore, it does not incorporate well with the eye or is not transparent after the cornea implant.

Professor Dong-Woo Cho of Mechanical Engineering, Professor Jinah Jang of Creative IT Convergence Engineering, and Ms. Hyeonji Kim at POSTECH, collaborated with Professor Hong Kyun Kim of Ophthalmology at Kyungpook National University School of Medicine, 3D printed an artificial cornea using the bioink which is made of decellularized corneal stroma and stem cells. Because this cornea is made of corneal tissue-derived bioink, it is biocompatible, and 3D cell printing technology recapitulates the corneal microenvironment, therefore, its transparency is similar to the human cornea. This research is recently published on Biofabrication.

The cornea is a thin outermost layer that covers the pupil and it protects the eye from the external environment. It is the first layer that admits light and therefore it needs to be transparent, move as the pupil moves, and have flexibility. However, it has been limited to develop an artificial cornea using synthetic biocompatible materials because of different cornea-related properties. In addition, although many researchers have tried to repeat the corneal microenvironment to be transparent, the materials used in existing studies have limited microstructures to penetrate the light.

The human cornea is organized in a lattice pattern of collagen fibrils. The lattice pattern in the cornea is directly associated with the transparency of cornea, and many researches have tried to replicate the human cornea. However, there was a limitation in applying to corneal transplantation due to the use of cytotoxic substances in the body, their insufficient corneal features including low transparency, and so on. To solve this problem, the research team used shear stress generated in the 3D printing to manufacture the corneal lattice pattern and demonstrated that the cornea by using a corneal stroma-derived decellularized extracellular matrix bioink was biocompatible.

In the 3D printing process, when ink in the printer comes out through a nozzle and passes through the nozzle, frictional force which then produces shear stress occurs. The research team successfully produced transparent artificial cornea with the lattice pattern of human cornea by regulating the shear stress to control the pattern of collagen fibrils.

The research team also observed that the collagen fibrils remodeled along with the printing path create a lattice pattern similar to the structure of native human cornea after 4 weeks in vivo.

Professor Jinah Jang said with excitement, “the suggested strategy can achieve the criteria for both transparency and safety of engineered cornea stroma. We believe it will give hope to many patients suffered from cornea related diseases.”

###

This study was supported by the Industrial Technology Innovation Program funded by the Ministry of Trade, Industry and Energy, the National Research Foundation of Korea grant funded by the Korea government, and the Ministry of Science and ICT, Korea, under the ICT Consilience Creative program supervised by the Institute for Information and Communications Technology Planning and Evaluation.

Media Contact
Hyeyoung Choi
[email protected]

Related Journal Article

http://dx.doi.org/10.1088/1758-5090/ab1a8b

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyOphthalmologyTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    71 shares
    Share 28 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PSMA-Targeted Alpha Therapy Combined with BET Inhibitors

Innovative Asymmetric Supercapacitor Using N-Doped Carbon and Ti3C2Tx

Preterm Birth Linked to Long-Term Health Risks: URI Study Urges Adult Health Records Update

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.