• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New study reveals an unexpected survival mechanism of a subset of cancer cells

Bioengineer by Bioengineer
May 28, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Embedded at the end of chromosomes are structures called “telomeres” that in normal cells become shorter as cells divide. As the shortening progresses it triggers cell proliferation arrest or death. Cancer cells adopt different strategies to overcome this control mechanism that keeps track of the number of times that a cell has divided. One of these strategies is the alternative lengthening of telomeres (ALT) pathway, which guarantees unlimited proliferation capability. Now, a research group led by Claus M. Azzalin at Instituto de Medicina Molecular João Lobo Antunes (iMM; Portugal: https://imm.medicina.ulisboa.pt/en/investigacao/labs/azzalin-claus-m-lab/) has discovered that a human enzyme named FANCM (Fanconi anemia, complementation group M) is absolutely required for the survival of ALT tumor cells. The results were now published in the open access journal Nature Communications*. Future strategies targeting the activity of this molecule in ALT tumor cells can constitute the basis of a novel therapeutic protocol for the treatment of these tumors.

ALT tumors are approximately 10% of the human tumors, and often develop in children (for example, juvenile osteosarcoma) and they are particularly resistant to conventional chemotherapy. “Contrary to the canonical telomere elongation mechanism that activates the enzyme telomerase, these tumor cells specifically use this alternative pathway which is insensitive to therapeutic approaches based on telomerase inhibition”, explains Claus M. Azzalin, group leader at iMM.

“Previous studies have shown that a sustained physiological telomere damage must be maintained in these cells to promote telomere elongation. This scenario implies that telomeric damage levels be maintained within a specific threshold that is high enough to trigger telomere elongation, yet not too high to induce cell death”, says Bruno Silva, first author of this work. Using a series of molecular biology-, cell biology- and biochemistry-based experiments, the research team found an essential role for FANCM, a component of the DNA damage repair machineries of the cell. “What we have found is that ALT cells require the activity of the FANCM in order to prevent telomere instability and consequent cell death”, says Bruno Silva. “When we remove FANCM from ALT tumor cells, telomeres become heavily damaged and cells stop dividing and die very quickly. This is not observed in tumor cells that express telomerase activity or in healthy cells, meaning that is a specific feature of ATL tumor cells”, explains Claus M. Azzalin.

“In our view, this is very exciting because it indicates that transiently drugging FANCM activity in ALT cells should lead to very fast cell death specifically in these cells, and sets the potential basis for an alternative therapeutic protocol for this type of tumors”, adds Claus Azzalin.

###

This study was developed at iMM in collaboration with the Genome Stability Unit and the Department of Medicine at St. Vincent’s Institute of Medical Research and University of Melbourne (Australia) and the Institute of Biochemistry at ETH Zu?rich (Switzerland).

This study was supported by the Swiss National Science Foundation, the European Molecular Biology Organization, the Fundac?a?o para a Cie?ncia e a Tecnologia, the Cancer Council of Victoria, Australian National Health and Medical Research Council, the Buxton Trust and the Victorian Government’s OIS Program.

*Bruno Silva, Richard Pentz, Ana Margarida Figueira, Rajika Arora, Yong Woo Lee, Charlotte Hodson, Harry Wischnewski, Andrew J. Deans, and Claus M. Azzalin (2019) FANCM limits ALT activity by restricting telomeric replication stress induced by deregulated BLM and R-loops. Nature Communications. Doi: 10.1038/s41467-019-10179-z

Media Contact
Inês Domingues
[email protected]
http://dx.doi.org/10.1038/s41467-019-10179-z

Tags: BiochemistrycancerCell BiologyMedicine/HealthMolecular Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Birds Flourish Despite Pollution from Persistent ‘Forever’ Chemicals

October 8, 2025
Rice University Unveils Second Cohort of Chevron Energy Graduate Fellows

Rice University Unveils Second Cohort of Chevron Energy Graduate Fellows

October 7, 2025

Covalent Organic Frameworks: Building Infinite Metal–Organic Structures

October 7, 2025

Next-Generation Perovskite Solar Cells Near Commercialization Milestone

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1045 shares
    Share 418 Tweet 261
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    78 shares
    Share 31 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut Microbiota Alterations Determine Susceptibility to AIG-Associated Neuroendocrine Tumors

Circular RNAs in Mammalian Follicle Development: Insights

Surgical Menopause May Prompt Early Workforce Exit in Women, But Hormone Therapy Shows Promise

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.