• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

AI and high-performance computing extend evolution to superconductors

Bioengineer by Bioengineer
May 24, 2019
in Science
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Argonne National Laboratory/Andreas Glatz

Materials by design: Argonne researchers use genetic algorithms for better superconductors.

Owners of thoroughbred stallions carefully breed prizewinning horses over generations to eke out fractions of a second in million-dollar races. Materials scientists have taken a page from that playbook, turning to the power of evolution and artificial selection to develop superconductors that can transmit electric current as efficiently as possible.

Perhaps counterintuitively, most applied superconductors can operate at high magnetic fields because they contain defects. The number, size, shape and position of the defects within a superconductor work together to enhance the electric current carrying capacity in the presence of a magnetic field. Too many defects, however, can lead to blocking the electric current pathway or a breakdown of the superconducting material, so scientists need to be selective in how they incorporate defects into a material.

“When people think of targeted evolution, they might think of people who breed dogs or horses. Ours is an example of materials by design, where the computer learns from prior generations the best possible arrangement of defects.” — Argonne materials scientist Andreas Glatz.

In a new study from the U.S. Department of Energy’s (DOEArgonne National Laboratory, researchers used the power of artificial intelligence and high-performance supercomputers to introduce and assess the impact of different configurations of defects on the performance of a superconductor.

The researchers developed a computer algorithm that treated each defect like a biological gene. Different combinations of defects yielded superconductors able to carry different amounts of current. Once the algorithm identified a particularly advantageous set of defects, it re-initialized with that set of defects as a “seed,” from which new combinations of defects would emerge.

“Each run of the simulation is equivalent to the formation of a new generation of defects that the algorithm seeks to optimize,” said Argonne distinguished fellow and senior materials scientist Wai-Kwong Kwok, an author of the study. “Over time, the defect structures become progressively refined, as we intentionally select for defect structures that will allow for materials with the highest critical current.”

The reason defects form such an essential part of a superconductor lies in their ability to trap and anchor magnetic vortices that form in the presence of a magnetic field. These vortices can move freely within a pure superconducting material when a current is applied. When they do so, they start to generate a resistance, negating the superconducting effect. Keeping vortices pinned, while still allowing current to travel through the material, represents a holy grail for scientists seeking to find ways to transmit electricity without loss in applied superconductors.

To find the right combination of defects to arrest the motion of the vortices, the researchers initialized their algorithm with defects of random shape and size. While the researchers knew this would be far from the optimal setup, it gave the model a set of neutral initial conditions from which to work. As the researchers ran through successive generations of the model, they saw the initial defects transform into a columnar shape and ultimately a periodic arrangement of planar defects.

“When people think of targeted evolution, they might think of people who breed dogs or horses,” said Argonne materials scientist Andreas Glatz, the corresponding author of the study. “Ours is an example of materials by design, where the computer learns from prior generations the best possible arrangement of defects.”

One potential drawback to the process of artificial defect selection lies in the fact that certain defect patterns can become entrenched in the model, leading to a kind of calcification of the genetic data. “In a certain sense, you can kind of think of it like inbreeding,” Kwok said. “Conserving most information in our defect ‘gene pool’ between generations has both benefits and limitations as it does not allow for drastic systemwide transformations. However, our digital ‘evolution’ can be repeated with different initial seeds to avoid these problems.”

In order to run their model, the researchers required high-performance computing facilities at Argonne and Oak Ridge National Laboratory. The Argonne Leadership Computing Facility and Oak Ridge Leadership Computing Facility are both DOE Office of Science User Facilities.

An article based on the study, “Targeted evolution of pinning landscapes for large superconducting critical currents,” appeared in the May 21 edition of the Proceedings of the National Academy of Sciences. In addition to Kwok and Glatz, Argonne’s Ivan Sadovskyy, Alexei Koshelev and Ulrich Welp also collaborated.

Funding for the research came from the DOE‘s Office of Science.

###

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Media Contact
Chris Kramer
[email protected]

Original Source

https://www.anl.gov/article/tapping-the-power-of-ai-and-highperformance-computing-to-extend-evolution-to-superconductors

Related Journal Article

http://dx.doi.org/10.1073/pnas.1817417116

Tags: Chemistry/Physics/Materials SciencesMaterialsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    49 shares
    Share 20 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Weight-Adjusted Waist Index Predicts Breast Cancer

Institutional Factors Impacting Cervical Cancer Guideline Compliance

Bright Hybrid Excitons Boost Scalable X-ray Scintillators

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.