• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Data science helps engineers discover new materials for solar cells and LEDs

Bioengineer by Bioengineer
May 22, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Yang lab/Energy & Environmental Science

Engineers at the University of California San Diego have developed a high-throughput computational method to design new materials for next generation solar cells and LEDs. Their approach generated 13 new material candidates for solar cells and 23 new candidates for LEDs. Calculations predicted that these materials, called hybrid halide semiconductors, would be stable and exhibit excellent optoelectronic properties.

The team published their findings on May 22, 2019 in the journal Energy & Environmental Science.

Hybrid halide semiconductors are materials that consist of an inorganic framework housing organic cations. They show unique material properties that are not found in organic or inorganic materials alone.

A subclass of these materials, called hybrid halide perovskites, have attracted a lot of attention as promising materials for next generation solar cells and LED devices because of their exceptional optoelectronic properties and inexpensive fabrication costs. However, hybrid perovskites are not very stable and contain lead, making them unsuitable for commercial devices.

Seeking alternatives to perovskites, a team of researchers led by Kesong Yang, a nanoengineering professor at the UC San Diego Jacobs School of Engineering, used computational tools, data mining and data screening techniques to discover new hybrid halide materials beyond perovskites that are stable and lead-free. “We are looking past perovskite structures to find a new space to design hybrid semiconductor materials for optoelectronics.” Yang said.

Yang’s team started by going through the two largest quantum materials databases, AFLOW and The Materials Project, and analyzing all compounds that were similar in chemical composition to lead halide perovskites. Then they extracted 24 prototype structures to use as templates for generating hybrid organic-inorganic materials structures.

Next, they performed high-throughput quantum mechanics calculations on the prototype structures to build a comprehensive quantum materials repository containing 4,507 hypothetical hybrid halide compounds. Using efficient data mining and data screening algorithms, Yang’s team rapidly identified 13 candidates for solar cell materials and 23 candidates for LEDs out of all the hypothetical compounds.

“A high-throughput study of organic-inorganic hybrid materials is not trivial,” Yang said. It took several years to develop a complete software framework equipped with data generation, data mining and data screening algorithms for hybrid halide materials. It also took his team a great deal of effort to make the software framework work seamlessly with the software they used for high-throughput calculations.

“Compared to other computational design approaches, we have explored a significantly large structural and chemical space to identify novel halide semiconductor materials,” said Yuheng Li, a nanoengineering PhD candidate in Yang’s group and the first author of the study. This work could also inspire a new wave of experimental efforts to validate computationally predicted materials, Li said.

Moving forward, Yang and his team are using their high-throughput approach to discover new solar cell and LED materials from other types of crystal structures. They are also developing new data mining modules to discover other types of functional materials for energy conversion, optoelectronic and spintronic applications.

Behind the scenes: SDSC’s ‘Comet’ supercomputer powers the research

Yang attributes much of his project’s success to the utilization of the Comet supercomputer at UC San Diego’s San Diego Supercomputer Center (SDSC). “Our large-scale quantum mechanics calculations required a large number of computational resources,” he explained. “Since 2016, we have been awarded with computing time–some 3.46 million core-hours on Comet, which made the project possible.”

While Comet powered the simulations in this study, Yang said that SDSC staff also played a crucial role in his research. Ron Hawkins, SDSC’s director of industry relations, and Jerry Greenberg, a computational research specialist with the Center, ensured that adequate support was provided to Yang and his team. The researchers especially relied on the SDSC staff for the study’s compilation and installation of computational codes on Comet, which is funded by the National Science Foundation.

Yang, who was connected with SDSC via the Center’s Triton Shared Computing Cluster (TSCC) campus cluster at UC San Diego, said that Comet not only saved them time. “The value of these awarded computing resources is about $115,600, which also saved our project a great deal of money.”

###

Paper title: “High-throughput computational design of organic-inorganic hybrid halide semiconductors beyond perovskites for optoelectronics.”

This work was supported by the Global Research Outreach (GRO) Program of Samsung Advanced Institute of Technology (award number 20164974) and the National Science Foundation (ACI-1550404). The ab-initio molecular dynamics calculations used computational resources supplied by the Department of Defense High Performance Computing Modernization Program (HPCMP).

Media Contact
Liezel Labios
[email protected]

Original Source

http://jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=2793

Related Journal Article

http://dx.doi.org/10.1039/C9EE01371G

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.