• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Key acid-activated protein channel identified

Bioengineer by Bioengineer
May 20, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Newly characterized protein could contribute to acid-induced cell death caused by stroke, cancer and heart disease

Johns Hopkins researchers have discovered a long-sought protein, the proton-activated chloride channel (PAC), that is activated in acidic environments and could protect against the tissue-damaging effects of stroke, heart attack, cancer and inflammation. The researchers believe the discovery of this protein could provide a new drug target for potential therapies for stroke and other health issues.

“Knowing the identity of this acid-stimulated protein opens up a broad new avenue of both basic research and drug discovery,” says the study’s principal investigator Zhaozhu Qiu, Ph.D., an assistant professor in the Department of Physiology at the Johns Hopkins University School of Medicine.

The study was published April 26 in Science.

Acidity builds in tissues as a result of oxygen deprivation caused by damage or disease. As the acidity of the tissues grows, it damages cells and can cause them to die. The acidic buildup, say researchers, is known to open the gate of specialized channels through the cell membrane, causing an abnormal accumulation of ions inside the cell, which eventually causes it to swell and die. However, the identity of this channel has remained a mystery until now.

To solve this long-standing puzzle, the research team set up a method to rapidly test cells for these channel proteins. The researchers engineered human cell lines to produce a fluorescent molecule — its glow would be turned off when channels through the cell membrane open in response to acid. Using these cells, the researchers systematically tested a library of 2,725 genes one by one. In this way, they found a single gene, called TMEM206, the inactivation of which reliably eliminated channel activity in response to acid. Through further study, the researchers found that the gene corresponded to a single protein, which they named PAC.

This gene can be found from the human genome all the way to fish. “Its evolutionary conservation and wide expression suggest a broad role for this new channel family in physiology and disease — now we are very excited to figure it all out,” says Qiu.

Curiously, the PAC gene is one of the genes most frequently different between Tibetan highlanders and Han Chinese. “This leads us to believe,” says Qiu, “PAC could have a conserved role in the adaptation to hypoxia,” a condition that also results in increased acidity in the body.

###

Other researchers involved in the study include Jianan Chen, Maria del Carmen Vitery, James Osei-Owusu, Jiachen Chu and Shuying Sun of the Johns Hopkins University School of Medicine, and Haiyang Yu of the University of California San Diego.

This work was supported by the Maximizing Investigators’ Research Award from the National Institute of General Medical Sciences and fellowships from the National Institutes of Health and the American Heart Association.

Media Contact
Rachel Butch
[email protected]

Related Journal Article

https://www.hopkinsmedicine.org/news/newsroom/news-releases/key-acid-activated-protein-channel-identified
http://dx.doi.org/10.1126/science.aav9739

Tags: Medicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.