• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Researchers create ‘impossible’ nano-sized protein cages with the help of gold

Bioengineer by Bioengineer
May 8, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from an international collaboration have succeeded in creating a “protein cage”–a nanoscale structure that could be used to deliver drugs to specific places of the body–that can be readily assembled and disassembled but that is also extremely durable, withstanding boiling and other extreme conditions. They did this by exploring geometries not found in nature, but reminiscent of “paradoxical geometries” found in Islamic art.

Role-playing gamers–at least those who played before the digital age–are aware that there are restrictions governing the shape of dice; try to make a six-sided die by replacing the square faces with triangles and you will be left with something horribly distorted and certainly not fair. This is because there are strict geometrical rules governing the assembly of these so-called isohedra. In nature as well, isohedral structures are found at the nano level. Usually made from many protein subunits and having a hollow interior, these protein cages carry out many important tasks. The most famous examples are viruses where the protein cage acts as a carrier of viral genetic material into host cells.

Synthetic biologists, for their part, are interested in making artificial protein cages in the hope of imparting them with useful and novel properties. There are two challenges to achieving this goal. The first is the geometry problem–some candidate proteins may have great potential utility but are automatically ruled out because they have the wrong shape to assemble into cages. The second problem is complexity–most protein-protein interactions are mediated via complex networks of weak chemical bonds that are very difficult to engineer from scratch.

The new research began at the Heddle Initiative Research Unit at RIKEN in Japan and moved to Malopolska Centre of Biotechnology, Jagiellonian University in Poland. In it researchers found a way to solve both problems. “We were able to replace the complex interactions between proteins with simple ‘staples’ based on the coordination of single gold atoms.” explains Professor Jonathan Heddle, the senior author of the research. “This simplifies the design problem and allows us to imbue the cages with new properties such as assembly and disassembly on demand.”

The research has also found a way to get around the geometrical problem: “The building blocks of our protein cage are 11-membered rings.” says Ali Malay, the first author of the paper, who is currently in the RIKEN Center for Sustainable Resource Science. “Mathematically speaking such shapes should be forbidden from forming symmetrical polyhedra.” However, the researchers found that due to inherent flexibility, protein complexes can achieve previously unprecedented constructions based on near-perfect geometrical coincidences. “Previously proteins that were ignored because they had the ‘wrong’ shape can now be considered.” says Malay.

The implications of the work are far-reaching, “What we, together with our collaborators have found, is simply the first step.” says Heddle, who hopes that the work can be expanded further to produce cages with new structures and new capabilities and also investigated for potential applications particularly in drug delivery.

###

Media Contact
Jens Wilkinson
[email protected]
http://dx.doi.org/10.1038/s41586-019-1185-4

Tags: BiologyBiotechnologyChemistry/Physics/Materials SciencesMolecular BiologyNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    68 shares
    Share 27 Tweet 17
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neonatal HIE and Acute Kidney Injury Risks Evaluated

Promising New Alternative to Opioids Unveiled

Revised Chinese Children’s Sleep Questionnaire Proven Reliable

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.