• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Identifying therapeutic targets in sepsis’ cellular videogame

Bioengineer by Bioengineer
May 8, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LEXINGTON, Ky. (May 8, 2019) — Sepsis is a medical condition that few patients have heard of and most doctors dread. The body’s response to attack by bacteria can trigger a cascade of cellular self-destruction that inadvertently causes blood clots, multi-organ failure, and death.

The immune system functions as a sort of cellular Pac-Man, using white blood cells to hunt out the “bad guys,” initiating attacks and counter-attacks. However, in extreme cases, white blood cells commit a sort of hara-kiri, triggering their own death in an attempt to destroy the infection. Sometimes it works — but when it doesn’t, the complications are dangerous.

The arsenal of weapons to treat severe cases of sepsis is miserably small, and physicians have little to provide other than antibiotics, fluids, and hope. Exciting new research has defined the chain of molecular events that goes awry in sepsis, opening up opportunities for new treatments to fight the condition that affects more than a million Americans each year and kills up to a third of them.

Two collaborating laboratories at the University of Kentucky were able to establish the events within white blood cells that progresses from inflammasome activation to a type of programmed cell death called pyroptosis — and culminates in the damaging blood clots.

“Recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, but we didn’t know how pyroptotic cell death drives the disease process,” said Zhenyu Li, M.D., Ph.D., an associate professor in the University of Kentucky’s Department of Molecular and Cellular Biochemistry.

“If we could uncover that link, it would open up possibilities for therapies that target inflammatory, infection-mediated clotting.”

The teams, led by Li and Yinan Wei, Ph.D. of UK’s Department of Chemistry, determined that certain bacterial proteins and endotoxin trigger inflammasome activation in white blood cells, causing pyroptosis. During pyroptosis, pores form in the white blood cell membrane that result in the release of tissue factor, a protein known to initiate the clotting process.

“Our data establish inflammasome activation as an important link between inflammation and blood clotting,” Li said. “Our findings advance the understanding of the relationship between bacterial infections and coagulation as well as provide evidence that inflammasome may be a potential therapeutic target for sepsis.”

###

The data was published online this week in advance of its June publication in Cell Press‘ Immunity.

Media Contact
Laura Wright
[email protected]
http://dx.doi.org/10.1016/j.immuni.2019.04.003

Tags: Critical Care/Emergency MedicineMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.