• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Staying healthy longer in space

Bioengineer by Bioengineer
May 6, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Rodent Research 12 (RR-12) investigation joins a series of studies aboard the International Space Station with the common goal of keeping astronauts healthy in space

IMAGE

Credit: NASA

Falling ill while traveling is an unfortunate yet common occurrence. Even a minor bug can ruin an entire trip. But for astronauts, getting sick on a long space voyage would have far more serious consequences than a little spoiled fun.

The Rodent Research 12 (RR-12) investigation joins a series of studies aboard the International Space Station with the common goal of keeping astronauts healthy in space.

Research has shown that spaceflight causes significant changes in the human immune system. These changes seem to depend on the length of time spent in space, and more research is needed to confirm these findings and significance for long term health.

Scientists also want to know exactly how the immune system responds when exposed to a pathogen that can cause illness while in space. Mice have immune systems very similar to that of humans, so RR-12 is sending mice to the space station in an effort to answer that question.

“First, we are looking at the primary immune response, which will show how well the immune system produces antibodies the first time it sees an immune challenge,” said principal investigator Michael J. Pecaut at Loma Linda University in California. “Then, we look at how well the memory response works in space.” Pecaut leads the experiment with co-investigator Stephen K. Chapes at Kansas State University in Manhattan, Kansas.

Because infectious organisms are unwelcome on the space station, the researchers are using a vaccine that is similar to the one commonly used for tetanus to generate an antibody or immune response in the mice. The vaccine toxoid poses no risk to crew members because all have already received the same vaccine.

One group of mice receives its first exposure to the vaccine after two weeks aboard the space station with researchers examining the number and type of antibodies produced as a result. This part of the study helps determine if the immune system can respond to a challenge it has never seen before while in space. The investigators expect to see fewer immune cells and different types of them than the vaccine typically triggers on the ground.

A second set of mice receives the vaccine on the ground so it can develop an antibody response and immunological memory before flying to the space station, just as a person would after receiving a vaccination. The mice receive a second vaccination two weeks into the flight. This allows researchers to test whether immunological memory is effective in space by comparing the responses in the two groups of mice.

“If the diversity and number of immune cells that are produced changes in space, that affects the ability of astronauts to respond to some sort of immune challenge such as bacteria on the station,” Pecaut said.

The investigators plan to analyze the immune response of the mice in orbit so they can be sure the changes they see are caused by spaceflight and not by the experience of re-entry or return to Earth.

In addition to establishing a link between spaceflight and reduced immune system activation, the investigation could lead to measures that counteract the reduced activation to help protect crew members on long-duration missions.

The investigation also may advance research on antibody production and response to vaccines, helping to improve the effectiveness of vaccines and other therapies for treating diseases and cancers.

“Because NASA is so careful with its astronauts, very few people get sick during spaceflight and it’s not a major concern now,” Pecaut said. “But as we start sending astronauts on longer trips, or as opportunities for space commercialization or tourism ramp up, we need to know that the immune system is still effective. We want to be sure that astronauts can respond to an immune system challenge in space the same as on Earth.”

After all, no one wants a trip to the Moon or Mars ruined by an illness.

This investigation, sponsored by NASA Space Life and Physical Science-Space Biology (NASA-SLPS-Space Biology), is the first time rodents have flown to the space station from NASA’s Wallops Flight Facility aboard a Cygnus spacecraft. This mission tests a new late load capability, allowing time-sensitive experiments to be loaded into Cygnus just 24 hours before launch rather than the previous four-day requirement.

###

Media Contact
Carrie Gilder
[email protected]

Original Source

http://www.nasa.gov/mission_pages/station/research/news/rr-12-stay-healthy-in-space

Tags: BiochemistryBiologyCell BiologyImmunology/Allergies/AsthmaMicrobiologyPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Bending Light: UNamur and Stanford Unite to Revolutionize Photonic Devices

Bending Light: UNamur and Stanford Unite to Revolutionize Photonic Devices

August 21, 2025
blank

On-Chip All-Dielectric Metasurface Enables Creation of Topological Exceptional Points

August 21, 2025

Versatile Reconfigurable Integrated Photonic Computing Chip Unveiled

August 21, 2025

Chung-Ang University Researchers Develop Paper Electrode-Based Soft Robots That Crawl

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deploying Solar Panels in Space: A Boost for Europe’s Net-Zero Transition

Ambient Documentation Technologies Alleviate Physician Burnout and Rekindle Joy in Medical Practice

Examining the Link Between GLP-1 Receptor Agonists and Cancer Risk in Adults with Obesity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.