• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Nanomicrocell catalysts: A new kind of highly efficient integrated catalyst system

Bioengineer by Bioengineer
April 29, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Chemical reactions are involving directional migration of electrons and charged intermediates, depending on the redox potentials of different reactive sites. The chemical energy can be converted into electrical energy when the chemical reactions are occurred in fuel cell devices. However, restricted by the high energy barriers of chemical reactions, numerous chemical reactions have to be performed under harsh conditions or in the presence catalysts by changing the reaction paths, even though the Gibbs free energy is much less than zero. Recently, a new kind of integrated catalyst system, denoted as nanomicrocell catalysts, was developed, which opened a new window for development of highly efficient catalysts by markedly reducing the energy barriers of chemical reactions.

This work was reported in Science Bulletin (2019, 64, 385-390), entitled “Reducing energy barriers of chemical reactions with a nanomicrocell catalyst consisting of integrated active sites in conductive matrices” by Chuan-De Wu et al. from Zhejiang University. Inspired by the natural phenomena, such as steel corrosion, the authors proposed a new kind of integrated catalyst system, denoted as nanomicrocell catalysts, consisting of different redox-active sites with different oxidation-reduction potentials and catalytic properties immobilized on conductive matrices. Similar to traditional fuel cells, the nanomicrocell catalyst system integrates paired anodes and cathodes that are connected by nanosized conductive matrices, which could significantly improve the catalytic efficiency in chemical reactions.

The authors prepared a nanomicrocell catalyst, consisting of boron-and-nitrogen co-doped carbon nanodots (denoted as BNCDs) and immobilized Pd species by coordinating with N atoms, to study the catalytic properties of the proof-of-concept catalyst system. In the nanomicrocell catalyst, BNCDs were used as conductive matrices, immobilized Pd species on N sites as anode and electron-deficient B atoms as cathode. The authors selected catalytic hydrogenation of benzaldehyde as a model reaction to study the roles of different constituent elements in the catalyst system on the catalytic properties. Detailed experimental results showed that the catalytic properties of the nanomicrocell catalyst in hydrogenation of benzaldehyde are highly depending on the selective adsorption and catalytic activation of different reactants by different redox-active electrodes, and transportation efficiency of electrons and charge carriers.

According to the results obtained in this work, the nanomicrocell catalyst system provides a new perspective to illustrate many difficultly understood phenomena in catalytic reactions, and opens up a new window for the designed synthesis of advanced catalysts to improve the catalytic properties by markedly reducing chemical reaction energy barriers. The nanomicrocell catalyst system also provides new way for development of inhibitory catalysts to decelerate chemical reactions in corrosion protection field, and preparation of efficient electrocatalysts and photocatalysts.

###

This work was supported by the National Nature Science Foundation of China (21373180, 21525312 and 21872122).

See the article:

Guo-Peng Zhan, Chuan-De Wu. Reducing energy barriers of chemical reactions with a nanomicrocell catalyst consisting of integrated active sites in conductive matrices. Science Bulletin, 2019, 64(6): 385-390

https://doi.org/10.1016/j.scib.2019.02.004

Media Contact
WU Chuan-De
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.scib.2019.02.004

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.