• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 10, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Biological machinery of cell’s ‘executioner’ yields secrets of its control

Bioengineer by Bioengineer
April 26, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: St. Jude Children’s Research Hospital

Researchers led by St. Jude Children’s Research Hospital structural biologists have discovered how the cell switches on an executioner mechanism called necroptosis that induces damaged or infected cells to commit suicide to protect the body.

Abnormal function of necroptosis also plays a role in the pathology of a broad array of diseases. Cancer cells avoid destruction by inhibiting necroptosis; and abnormal activation of necroptosis is linked to the damage from multiple sclerosis, Parkinson’s disease and tissue injury from blood flow loss. Thus, the researchers’ basic findings opens the pathways for drugs to treat those disorders by controlling necroptosis.

Led by structural biologist Tudor Moldoveanu, Ph.D., an assistant member of St. Jude Department of Structural Biology, the team included scientists from St. Jude, and the Stanford University and Vanderbilt University Schools of Medicine. The research was published today in the scientific journal Cell Chemical Biology.

Their research revealed how a set of molecules called inositol phosphates acts as an activating code, like the combination to a safe, to unleash the cell-killing mechanism of a molecule called MLKL. The activation triggers an “executioner domain” of the MLKL molecule to break down the integrity of the cell membrane and kill the cell.

###

The first author was Dan McNamara of St. Jude. The other St. Jude authors were Christy Grace, Cristina Guibao, Casey Cai, Hong Wu, Ravi Kalathur, Giovanni Quarato, Douglas Green and Amanda Nourse. Co-authors from the Stanford University School of Medicine were Cole Dovey, Jonathan Diep and Jan Carette. Co-authors from the Vanderbilt University School of Medicine were Andrew Hale and John York.

The work was supported by a St. Jude Academic Programs Office Special Postdoctoral Fellowship, the David and Lucile Packard Foundation, the National Institutes of Health (R01CA169291, F30HL143826, R01GM124404, T32AI007328, DP2AI104557, P30CA021765) and ALSAC, the fundraising and awareness organization of St. Jude.

Media Contact
Corey Carmichael
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.chembiol.2019.03.010

Tags: BiologyCell BiologyMedicine/HealthMicrobiologyMolecular BiologyParkinson
Share12Tweet8Share2ShareShareShare2

Related Posts

Lipedema Definition and Management: 2023 Global Consensus

January 10, 2026

Lucerastat Shows Promise in Fabry Disease Trials

January 10, 2026

Delirium Subtypes Affect Survival in Elderly Heart Failure Patients

January 10, 2026

Empowering Nursing Students in the AI Age

January 10, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    145 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Heterosis in Abaca BC2 Hybrid Dioscoro 1

Revolutionary Deep Learning Model Enhances Rainfall Forecasting

Lipedema Definition and Management: 2023 Global Consensus

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.