• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Eclogitic diamonds formed from oceanic crust, study shows

Bioengineer by Bioengineer
April 24, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Diamonds in eclogite source carbon from oceanic crust, not sediment

Eclogitic diamonds formed in Earth’s mantle originate from oceanic crust, rather than marine sediments as commonly thought, according to a new study from University of Alberta geologists.

Diamonds are found in two types of rocks from Earth’s mantle: peridotite and eclogite. Peridotite is the most common type of mantle rock. Eclogite forms from igneous oceanic crust that together with a thin veneer of overlying marine sediment has been brought deep into the mantle through a process known as subduction. Even though, many researchers thought eclogitic diamonds formed with carbon from marine sediment, a large carbon reservoir. The new study turns this theory on its head.

“The key indices for diamond source tracing are the ratios of stable isotopes, which are atoms that have the same proton number but different neutron number, of carbon and nitrogen in diamond,” explained Long Li, associate professor in the Department of Earth and Atmospheric Sciences and principal investigator of the study. “These isotopic ratios act as source fingerprints. Marine sediment was invoked as the source of eclogitic diamonds mainly because their highly variable carbon isotopic ratios match the signature of organic matter in sediment. But the sediment source has difficulty in explaining the highly variable nitrogen isotopic signature of eclogitic diamonds.”

The study investigated 80 drill samples of igneous oceanic crust from around the world, supplied by the International Ocean Discovery Program. The researchers, led by PhD student Kan Li, conducted extensive analyses to examine the carbon budgets and isotopic signatures of the major subducting oceanic slabs.

“We verified that the oceanic crust is a large reservoir for carbon, mostly in form of carbonate. What really surprised us is that the bulk carbonate in subducting igneous oceanic crusts in part shows a similar isotopic signature to organic matter in sediment,” said Kan Li. “It then makes much more sense for igneous oceanic crust, which also contains isotopically highly variable nitrogen, to serve as the source of eclogitic diamonds in Earth’s mantle.”

“This study addresses a long-standing puzzle in diamond genesis and the deep carbon cycle,” said Long Li. “The deep carbon cycle, a process that circulates carbon from Earth’s surface to the deep interior and back again, has strong impact on mantle chemistry and surface environment. Our study shows that oceanic crust plays a much larger role in this than previously thought.”

“This research changes the way that we think recycled carbon gets into diamonds and changes what we think about how carbon in general is recycled into the Earth. It makes us re-evaluate how diamonds are formed and what the dominant source of carbon is in both the shallow and very deepest parts of Earth’s mantle,” added Graham Pearson, professor,Henry Marshall Tory Chair, and Canada Excellence Research Chair Laureate.

###

The study was conducted with support from NSERC, Canada Research Chair Program, and Deep Carbon Observatory. The paper, “Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling,” was published in Earth and Planetary Science Letters (doi: 10.1016/j.epsl.2019.03.041).

Media Contact
Katie Willis
[email protected]

Related Journal Article

https://www.ualberta.ca/science/science-news/2019/april/eclogite-diamonds
http://dx.doi.org/10.1016/j.epsl.2019.03.041

Tags: Earth ScienceGeology/SoilGeophysics/GravityOceanographyPlate Tectonics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.