• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A deep-learning model may help predict lung cancer survival and outcomes

Bioengineer by Bioengineer
April 22, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bottom Line: A deep-learning model developed using serial image scans of tumors from patients with non-small cell lung cancer (NSCLC) predicted treatment response and survival outcomes better than standard clinical parameters.

Journal in Which the Study was Published: Clinical Cancer Research, a journal of the American Association for Cancer Research

Author: Hugo Aerts, PhD, director of the Computational and Bioinformatics Laboratory at the Dana-Farber Cancer Institute and Brigham and Women’s Hospital, and an associate professor at Harvard University.

Background: “Our research demonstrates that deep-learning models integrating routine imaging scans obtained at multiple time points can improve predictions of survival and cancer-specific outcomes for lung cancer,” said Aerts. “By comparison, a standard clinical model relying on stage, gender, age, tumor grade, performance, smoking status, and tumor size could not reliably predict two-year survival or treatment response.”

Lung cancer is the most common cancer and the leading cause of cancer death worldwide. NSCLC accounts for about 85 percent of all lung cancers. The standard assessment for diagnosis and response to therapy for these patients relies heavily on the measurement of maximum tumor diameter, which is susceptible to variations in interpretation between observers and over time.

How the Study Was Conducted: To see if they could extract more predictive insights as cancers evolve, Aerts and colleagues built deep-learning models. They transferred learning from ImageNet, a neural network created by researchers at Princeton University and Stanford University that identifies a wide range of ordinary objects from the most relevant features, and trained their models using serial CT scans of 179 patients with stage 3 NSCLC who had been treated with chemoradiation. They included up to four images per patient obtained routinely before treatment and at one, three, and six months after treatment for a total of 581 images.

The investigators analyzed the model’s ability to make significant cancer outcome predictions with two datasets: the training dataset of 581 images and an independent validation dataset of 178 images from 89 patients with non-small cell lung cancer who had been treated with chemoradiation and surgery.

Results: The models’ performance improved with the addition of each follow-up scan. The area under the curve, a meaure of the model’s accuracy, for predicting two-year survival based on pretreatment scans alone was 0.58, which improved significantly to 0.74 after adding all available follow-up scans. Patients classed as having low risk for mortality by the model had six-fold improved overall survival compared with those classed as having high risk.

Compared with the clinical model that utilizes parameters of stage, gender, age, tumor grade, performance, smoking status, and clinical tumor size, the deep-learning model was more efficient in predicting distant metastasis, progression, and local regional recurrence.

Author’s Comments: “Radiology scans are captured routinely from lung cancer patients during follow-up examinations and are already digitized data forms, making them ideal for artificial intelligence applications,” said Aerts. “Deep-learning models that quantitatively track changes in lesions over time may help clinicians tailor treatment plans for individual patients and help stratify patients into different risk groups for clinical trials.”

Study Limitations: The main limitation of this proof-of-principle research is that it needs to be expanded with more data and evaluated in prospective clinical trials, said Aerts.

###

Funding & Disclosures: The study was supported by grants from the National Institutes of Health. Aerts reports shares from Genospace and Sphera, unrelated to this research.

Media Contact
Julia Gunther
[email protected]
http://dx.doi.org/10.1158/1078-0432.CCR-18-2495

Tags: cancerMedicine/HealthPulmonary/Respiratory MedicineRobotry/Artificial Intelligence
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.