• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New role for innate immune sensor: Suppressing liver cancer

Bioengineer by Bioengineer
April 16, 2019
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UTSW

DALLAS – April 15, 2019 – UT Southwestern researchers have found that a protein in the body’s innate immune system that responds to gut microbes can suppress the most common type of liver cancer.

The study, published today in the journal eLife, determined that NLRP12, an innate immune sensor, has a protective effect against hepatocellular carcinoma (HCC), a deadly human cancer associated with chronic inflammation. HCC is responsible for more than 80 percent of liver cancers in the U.S. It is the third-leading cause of cancer-related deaths worldwide and the ninth-leading cause in America, according to the National Cancer Institute.

NLRP12 is a member of the NOD-like family of pattern recognition receptors that help the body sense microbes and other stimuli within the cell to regulate the innate immune response – the body’s first line of defense against infection – in multiple ways. This latest work adds to a growing body of evidence connecting inflammation and the development of tumors in the liver.

“In this study, we demonstrated that NLRP12 responds to gut microbes and plays a critical role in suppressing a common form of liver cancer,” said Dr. Hasan Zaki, Assistant Professor of Pathology at UT Southwestern and corresponding author of the study.

Major risk factors for HCC include hepatitis B or C viral infection, chronic alcohol abuse, and nonalcoholic fatty liver disease, a condition increasing worldwide along with obesity. Although the precise mechanisms through which these conditions induce liver cancer are unknown, inflammation in the liver is considered a key player.

“Our study indicates that NLRP12 acts to suppress liver cancer by reducing inflammation and downregulating the signals involved in tumor progression,” said Dr. Zaki, whose laboratory conducted the experiments on mice and on human cells from liver cancer patients.

After being exposed to a chemical carcinogen, mice that were missing the Nlrp12 (mouse version) gene showed higher levels of inflammation and increased tumor development compared with normal mice, the study showed.

To understand why this occurred, the researchers looked at the signals sent by tumor cells in mice with and without the Nlrp12 gene. They found that the JNK (c-Jun N-terminal kinase) pathway – previously shown to be associated with liver cancer – is highly active in liver tumors that lack Nlrp12, Dr. Zaki said.

The JNK pathway can be activated by a component of bacterial cell walls called lipopolysaccharide (LPS), he said. Both “good” bacteria – which line the gut and aid in digestion – and “bad” pathogenic bacteria – such as the Salmonella or E. coli – can release LPS, Dr. Zaki explained.

The LPS can move from the gut to the liver via the bloodstream and contribute to inflammation by setting off the JNK and other signaling pathways. Such transport is much more common in chronically inflamed livers such as those of people suffering from hepatitis or fatty liver disease, he said.

The study data suggest that NLRP12 suppresses inflammation caused by gut microbiota and cancer-promoting signals, added Dr. Zaki, a member of the Harold C. Simmons Comprehensive Cancer Center.

To confirm the gut-liver inflammation-cancer hypothesis, the researchers treated mice with antibiotics to reduce levels of gut bacteria. “Depletion of gut microbiota with antibiotics dramatically reduced tumor growth in mice without Nlrp12,” Dr Zaki said. “This study suggests that NLRP12 could be a potential therapeutic target. It also indicates that finding a way to increase NLRP12 in the liver in combination with current immune checkpoint blockade therapies may improve liver cancer treatment.”

Immune checkpoint blockade is a new strategy for helping the body kill cancer cells through an immune response. When the strategy works, it is very effective, but it is often ineffective, causing researchers to seek ways to improve it.

Dr. Zaki said his team is now further exploring the precise mechanism through which NLRP12 regulates the JNK pathway.

###

UTSW co-authors include: lead author Dr. SM Nashir Udden, a former postdoctoral researcher in the Zaki lab and now an Instructor in Radiation Oncology; Dr. Youn-tae Kwak, a Research Associate in the Zaki lab and Senior Scientist in Biochemistry; Research Assistant Victoria Godry; Dr. Shahanshah Khan, postdoctoral research associate in the Zaki lab; Nicholas Loof, Manager of shared facilities at the Children’s Medical Center Research Institute at UT Southwestern (CRI); Dr. Lan Peng, Associate Professor of Pathology at UTSW; and Dr. Hao Zhu, Associate Professor at CRI and of Internal Medicine and Pediatrics at UTSW.

Dr. Md Abdul Wadud Khan of MD Anderson Cancer Center, Houston, also participated in the study.

The study received support from the Cancer Prevention and Research Institute of Texas (CPRIT) and from UT Southwestern.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution’s faculty has received six Nobel Prizes, and includes 22 members of the National Academy of Sciences, 17 members of the National Academy of Medicine, and 15 Howard Hughes Medical Institute Investigators. The full-time faculty of more than 2,500 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide care in about 80 specialties to more than 105,000 hospitalized patients, nearly 370,000 emergency room cases, and oversee approximately 3 million outpatient visits a year.

Media Contact
Deborah Wormser
[email protected]

Original Source

https://www.utsouthwestern.edu/newsroom/articles/year-2019/suppressing-liver-cancer.html

Tags: Medicine/Health
Share13Tweet7Share2ShareShareShare1

Related Posts

Xenopax Shows Promise in Steroid-Refractory GvHD Treatment

September 29, 2025

Pericardium Develops as Distinct Heart Structure

September 29, 2025

Evaluating Nigeria’s Nutrition Data Use in Health Decisions

September 29, 2025

Europe’s Urgent Call for Falls Prevention in Seniors

September 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    58 shares
    Share 23 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Xenopax Shows Promise in Steroid-Refractory GvHD Treatment

Electric Space Heating and Appliances Slash Residential Energy Use in the U.S.

Global Call to Advance Robust and Reproducible Polyphenol Research to Launch Next October in Malta at Polyphenols Applications World Congress and Iprona

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 61 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.