• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

This gene could play a major role in reducing brain swelling after stroke

Bioengineer by Bioengineer
April 15, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

USC study suggests a dose of the TRIM9 gene could decrease damage in stroke, concussion, encephalitis

Could a medication someday help the brain heal itself after a stroke, or even prevent damage following a blow to the head? A new USC study lends support to the idea.

When a person has a stroke, the brain responds with inflammation, which expands the area of injury and leads to more disability. In the April 9 issue of Cell Reports, USC researchers describe a key gene involved with tamping down inflammation in the brain, as well as what happens when the injured brain gets an added boost of that gene.

The gene — called TRIM9 — is abundant in the youthful brain but grows scarce with age, just as people become more at risk from stroke. In a lab model of stroke, researchers found that older brains with low TRIM9 levels — or engineered brains missing the TRIM9 gene entirely — were prone to extensive swelling following stroke.

But when the scientists used a harmless virus to carry a dose of the gene directly into TRIM9-deficient brains, the swelling decreased dramatically and recovery improved.

Jae Jung, lead author and chair of the Department of Molecular Microbiology and Immunology at the Keck School of Medicine of USC, says it’s unlikely that gene therapy delivered by viruses will become the go-to treatment for strokes, head injuries or encephalitis. It’s too slow, he said, and the best shot at treating stroke is within the first 30 minutes to one hour. Jung says the next step will be identifying what, exactly, flips on the switch for TRIM9 gene expression.

“Maybe there will be a way to chemically activate TRIM9 right after a stroke,” Jung said. “Or maybe a football player can take a medication that turns on TRIM9 gene expression right after they get a blow to the head.”

Not all inflammation in the brain is bad, Jung added. Inflammation plays a role in fighting infection and helps clear away dead tissue. But when it goes on too long, neurons die; inflammation causes the brain’s blood vessels to become permeable, allowing white blood cells to enter tissue where they don’t belong.

###

In addition to Jung, the paper’s other authors are Berislav Zlokovic and Zhen Zhao of the Zilkha Neurogenetic Institute at the Keck School; co-first authors Jianxiong Zeng and Yaoming Wang, Zhifei Luo Lin-Chun Chang, Ji Seung Yoo, Huan Yan, Younho Choi and Xiaochun Xie, all of the Keck School; Benjamin Deverman and Viviana Gradinaru of the California Institute of Technology; and Stephanie Gupton of the University of North Carolina at Chapel Hill.

The study was supported by the National Institutes of Health (grants CA200422, CA180779, DE023926, DE027888, DE28521, AI073099, AI116585, AI129496, AI140718, 9R01NS090904-16 and AI140705), the Hastings Foundation, the Fletcher Jones Foundation, the Alzheimer’s Association (grant NIRG-15-363387), the Whittier Foundation, the Cure for Alzheimer’s Fund (NS090904), Fondation Leducq Transatlantic Network of Excellence for the Study of Perivascular Spaces in Small Vessel Disease (reference 16 CVD 05 and GM108970), the Beckman Institute at Caltech through the Resource Center for CLARITY, Optogenetics and Vector Engineering, and an NIH Director’s New Innovator Award (DP20D017782).

Media Contact
Leigh Hopper
[email protected]

Related Journal Article

https://news.usc.edu/155902/key-gene-reduces-brain-swelling-after-stroke/
http://dx.doi.org/10.1016/j.celrep.2018.12.055

Tags: AgingMedicine/HealthneurobiologyStrokeTrauma/Injury
Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Nursing Education: Digital Literacy and Metaverse

August 26, 2025

Outcomes and Resistance in Low-Risk GTN: 270 Cases

August 26, 2025

Innovative Biomedical Sensors Enhance Implant Failure Detection

August 26, 2025

COMET-T Study: Glargine 300 U/ml in Type 1 Diabetes

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

University of Tennessee Partners on NSF Grants to Enhance Outcomes via AI

Innovative Ultrasound Method at HonorHealth Research Institute Activates Drugs to Target Pancreatic Cancer

Boosting Nursing Education: Digital Literacy and Metaverse

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.