• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers reveal novel therapeutic strategy for ALS

Bioengineer by Bioengineer
April 9, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a study published online in Brain on April 1, researchers from Dr. XU Jin’s lab at the Institute of Neuroscience of the Chinese Academy of Sciences and their collaborators revealed a new cellular mechanism for amyotrophic lateral sclerosis (ALS), suggested a novel therapeutic strategy targeting the RNA degradation pathway, and identified an asthma drug as a potential medication for ALS.

ALS is the most common motor neuron disease and one of the most devastating neurodegenerative diseases caused by progressive motor neuron degeneration. There is no cure for the disease and current treatment options are very limited. Thus, the disease is characterized by fast progression and high lethality.

Recent genetic advances have identified a group of new genes whose mutations contribute to the development of ALS. Among these genes, C9orf72 is the most common genetic cause of familial ALS, and even contributes to sporadic ALS.

Unlike commonly seen point mutations and deletions, (GGGGCC)n hexa-nucleotide repeats expansion (HRE) in a non-coding region of C9orf72 is the culprit. Intriguingly, these repeats could generate RNA and protein products and affect RNA metabolism as some other ALS-causing mutant proteins do, although the underlying mechanisms remain to be fully understood.

In this study, by coupling unbiased bioinformatic analysis of various transcriptome studies with validation experiments in multiple C9orf72 cellular and animal models, Dr. XU’s team unveiled the inhibition of the nonsense-mediated mRNA decay (NMD) pathway as a conserved consequence of the C9orf72 HRE.

NMD is a type of RNA surveillance machinery vital for the removal of defective or harmful RNA generated from faulty transcription, alternative splicing or viral infection. Key protein components of NMD are found in cytoplasmic structures called processing bodies.

Interestingly, researchers found that HRE-derived neurotoxic dipeptide repeats (DPRs) could inhibit the NMD pathway by suppressing processing-body formation while promoting stress granule formation.

To test whether the NMD pathway could be a potential therapeutic target for ALS, they first genetically reactivated the NMD pathway and found that core NMD genes, such as UPF1, could effectively protect against C9orf72 DPRs neurotoxicity. Next, after evaluating several potential NMD-activating compounds, they identified Tranilast as the most promising NMD-activating drug and found that it could rescue cells and fruit flies from C9orf72 DPR-induced neurotoxicity.

Given that blood-brain barrier-permeable Tranilast has been clinically used to treat asthma with a great safety record since the 1980s, this study will prompt future pre-clinical and clinical investigations to test the therapeutic potential of Tranilast and other NMD-activating compounds in ALS patients with defective RNA metabolism.

###

The patent related to this discovery is pending.

Media Contact
XU Jin
[email protected]

Related Journal Article

http://english.cas.cn/
http://dx.doi.org/10.1093/brain/awz070

Tags: DrugsMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Neuroprosthetics Revolutionize Gut Motility and Metabolism

Neuroprosthetics Revolutionize Gut Motility and Metabolism

August 10, 2025
blank

Multivalent mRNA Vaccine Protects Mice from Monkeypox

August 10, 2025

AI Synthesizes Causal Evidence Across Study Designs

August 9, 2025

Non-Coding Lung Cancer Genes Found in 13,722 Chinese

August 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    56 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reviving Spent LiFePO4 with Multifunctional Organic Lithium Salt

Key Biophysical Rules for Mini-Protein Endosomal Escape

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.