• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Single cell transcriptomics: A new sequencing approach

Bioengineer by Bioengineer
April 9, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from University of Southern Denmark, Wellcome Sanger Institute and BGI, today published a study in the journal Genome Biology comparing the library preparation and sequencing platforms for single-cell RNA-sequencing (scRNA-seq).

Single cell transcriptomics (i.e. scRNA-seq) is a next-generation sequencing approach that simultaneously measures the messenger RNA concentrations (encoded by DNA/genome/genetic blueprint) of thousands of genes, in individual cells. This enables researchers to gain a high-resolution view of cells to unravel heterogenous cell populations and better understand individual cell functions in the body. Although several single-cell protocols exist, the sequencing has traditionally been performed using Illumina technology and sequencing platforms.

The authors here performed the first comparison of traditional Illumina platforms to an alternative BGISEQ-500 short-read sequencing platform for single-cell transcriptomics. The authors profiled 468 individual cells by scRNA-seq using two different protocols (SMARTer and Smart-seq2), generating 1297 single-cell libraries for sequencing across both Illumina HiSeq and BGISEQ-500 platforms. By using two different cell types (Human immortalized leukemia cells ‘K562’ and mouse embryonic stem cells ‘mESCs’) and spiking synthetic RNA control sequences, the authors benchmarked the performance between sequencing platforms. The study found that BGISEQ-500 was highly comparable in sensitivity, accuracy and reproducibility of detected RNA molecules to the Illumina platform

Although sequencing reagents and personnel costs are subject to geographical constraints, BGISEQ-500 typically has higher data throughput at slightly lower costs. ‘The combination of higher throughput with marginally increased cost per lane makes the BGISEQ-500 an attractive alternative for scRNA-seq projects, where significant multiplexing is required alongside considerable read depth per cell’ notes Dr Miaomiao Jiang, BGI’s co-lead author on the paper.

“This is the first study to compare Illumina HiSeq with BGISeq-500 sequencing platform for single-cell RNA-sequencing, offering researchers with an alternative sequencing option. Our study finds very similar performance in the compared metrics between the platforms. This would be extremely useful for large scale single-cell sequencing initiatives, generating reference maps of all human cell types and enhancing our understanding of human health.”,

Dr Kedar Natarajan is the lead and co-corresponding author on the paper. Dr. Natarajan heads his single-cell group at Department of Biochemistry and Molecular Biology at SDU.

###

Media Contact
Kedar Natarajan
[email protected]

Tags: Cell BiologyGeneticsMedicine/Health
Share14Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.