• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers create molecules with strong anti-Zika virus potential

Bioengineer by Bioengineer
April 4, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The finding might also have application in developing anti-parasite and antibacterial treatments

New York, April 4, 2019 – The Zika virus is widely known for causing microcephaly and other brain defects in the fetuses of pregnant, infected women. Currently, there are no approved antiviral therapies specifically designed to treat Zika, but researchers at the Advanced Science Research Center (ASRC) at The Graduate Center of The City University of New York, Hunter College, and their collaborators at Texas Tech University Health Sciences Center are on to a discovery that may lead to a much needed treatment. Led by the ASRC’s Nanoscience Initiative, the scientists have developed a new class of molecules that show potent anti-Zika activity and low toxicity towards animal cells. Described in a paper published in the Journal of Medicinal Chemistry, these compounds could someday become the basis for a Zika-specific therapeutic.

“Our molecules are more potent than almost anything currently being used against Zika,” said ASRC and Hunter College Chemistry Professor Adam Braunschweig, whose lab is conducting the work. “They are very potent, have low cell toxicity, and have the potential to be used for Zika treatment and detection.”

All viruses and eukaryotic cells, which include plant and animal cells, have carbohydrates attached to their surfaces. The carbohydrates act like ID tags, helping cells recognize each other via carbohydrate receptors. This same method helps viruses gain entry into cells. In the new study, the researchers found a way to block this interaction.

The researchers created synthetic carbohydrate receptors, testing their anti-Zika activity in Vero cells and HeLa cells. In both cases, the molecules proved highly potent. The receptors likely fight the infection in one of two ways, says Braunschweig. They either bind to the carbohydrates on the cells’ surfaces, or they bind those of the virus. Either way, the virus would be blocked from communicating with and entering the cells.

Synthetic carbohydrate receptors are not often useful because they are not very discriminating in what they choose to bind. In this study, however, the researchers created highly effective receptors by mimicking the binding approach of naturally occurring receptors. In addition to the potential for treating Zika, the strategy of using synthetic receptors also has anti-cancer, anti-parasite, and antibacterial potential.

A next step in the researchers’ search for an effective Zika treatment will be to create a second generation of molecules by using the chemical intuition gained in this study to modify the structures and make them even more effective. Eventually, the team would like to test the molecules’ therapeutic potential in animal trials.

###

Organizational Attribution

Our correct name is the Advanced Science Research Center at The Graduate Center of The City University of New York. For the purpose of space, Advanced Science Research Center, GC/CUNY is acceptable. On second reference, ASRC is correct.

About the Advanced Science Research Center

The ASRC at The Graduate Center elevates scientific research and education at CUNY and beyond through initiatives in five distinctive, but increasingly interconnected disciplines: environmental sciences, nanoscience, neuroscience, photonics, and structural biology. The ASRC promotes a collaborative, interdisciplinary research culture with renowned researchers from each of the initiatives working side-by-side in the ASRC’s core facilities, sharing equipment that is among the most advanced available.

About The Graduate Center of The City University of New York

The Graduate Center of The City University of New York (CUNY) is a leader in public graduate education devoted to enhancing the public good through pioneering research, serious learning, and reasoned debate. The Graduate Center offers ambitious students more than 40 doctoral and master’s programs of the highest caliber, taught by top faculty from throughout CUNY — the nation’s largest public urban university. Through its nearly 40 centers, institutes, and initiatives, including its Advanced Science Research Center (ASRC), The Graduate Center influences public policy and discourse and shapes innovation. The Graduate Center’s extensive public programs make it a home for culture and conversation.

Media Contact
Shawn Rhea
[email protected]
http://dx.doi.org/10.1021/acs.jmedchem.9b00142

Tags: BiochemistryChemistry/Physics/Materials SciencesDisease in the Developing WorldInfectious/Emerging DiseasesVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025
Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1229 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LTBP4 Variants Linked to Severe Pediatric Sepsis

Programmable Promoter Editing Enables Precise Transgene Control

AI Co-Pilots Enhance Brain-Computer Interface Control

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.