• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Nature versus nurture: Environment exerts greater influence on corn health than genetics

Bioengineer by Bioengineer
April 2, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: American Phytopathological Society

St. Paul, Minnesota (March 2019)–Corn is one of the most important staple crops in the world–over 1 billion metric tons of corn are harvested each year, comprising 37 percent of the global cereal production. Corn production occupies an estimated 188 million hectares–roughly the size of Mexico–and utilizes 13 percent of the world’s arable land. Because of this, there is a vested interest in keeping corn healthy.

Corn leaves are teaming with bacteria communities (the leaf “microbiome”) that influence plant health and performance, and scientists are still figuring out how. A team of scientists led by Dr. Jason Wallace recently published a study in the open access Phytobiomes Journal that advances what we know about these bacterial communities by investigating their relationships with corn genetics. According to Dr. Wallace, “the end-goal of all this research is to understand how crops interact with their microbial communities so we can harness them to make agriculture more productive and sustainable.”

In one of the largest and most diverse leaf microbe studies to date, the team monitored the active bacteria on the leaves of 300 diverse lines of corn growing in a common environment. They were especially interested to see how corn genes affected bacteria and found there was little relationship between the two–in fact, the bacteria were much more affected by the environment, although genetics still had a small role.

This is an interesting discovery that “breeding probably isn’t the best way to address this,” Dr. Wallace says. Instead, “the leaf community is probably better changed through farmer management.” That is, farmers should be able to change growing practices to enhance their current crops rather than seek out new plant varieties.

Going forward, Dr. Wallace suggests research into the functions of these bacterial communities, and then combining this knowledge to full systems-level understanding of the leaf community may enable development of beneficial management practices for farmers.

###

More details about this study can be found in “Quantitative Genetics of the Maize Leaf Microbiome,” published March 6, 2019 in Phytobiomes Journal Volume 2, Number 4.

Media Contact
Ashley Bergman Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/PBIOMES-02-18-0008-R

Tags: Agricultural Production/EconomicsAgricultureBacteriologyFood/Food ScienceGeneticsMicrobiologyMolecular BiologyPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

Nanoparticle Vaccine Achieves Sterile Malaria Protection

Nanoparticle Vaccine Achieves Sterile Malaria Protection

December 19, 2025
blank

New Thiazolidinone Antidiabetic Hybrids: Synthesis and Insights

December 19, 2025

Enzymatic Extraction of Isomalto-Oligosaccharides from Ginkgo Seeds

December 19, 2025

Unraveling Hybrid Culter’s Herbivorous Traits via Multi-Omics

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

IDH2 Lactylation Drives Angiogenesis in Diabetic Hearts

Machine Learning Drives Scalable Hierarchical Virus Classification

Multidisciplinary Cesarean Clinic Improves Maternal, Neonatal Outcomes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.