• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Scientists capture live, atomic-level detail of nanoparticle formation

Bioengineer by Bioengineer
April 2, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: US Department of Energy Ames Laboratory

Scientists at the Sensitive Instrument Facility of the U.S. Department of Energy’s Ames Laboratory achieved real-time atom rearrangement monitoring using aberration-corrected scanning transmission electron microscopy during the synthesis of intermetallic nanoparticles (iNPs).

In collaboration with Wenyu Huang, an associate professor in the Department of Chemistry at Iowa State University and a scientist at Ames Laboratory, they examined nanoparticles made of a platinum-tin alloy. These unique iNPs have applications in energy-efficient fuel conversion and biofuel production, and are one focus of Huang’s research group.

“In the formation of these materials, there was a lot of information missing in the middle that is useful to us for optimal catalytic properties tuning” said Huang.

By tracking the movement of metal atoms of platinum and tin during formation of iNPs using advanced microscopy at high temperature, intermediate phases were discovered with their own unique set of catalytic properties.

“Conventional material synthesis focuses on the beginning and the end of a reaction, without much understanding of the pathway. Atomic-level observation of the alloying process led to the discovery of the reaction route,” said Lin Zhou, a scientist in Ames Laboratory’s Division of Materials Sciences and Engineering. “Once we knew intermediate states in between, we could control the reaction to ‘stop’ at that point. That opens up a new way to predict and control our discovery of new materials.”

The research is further discussed in the paper, “Toward Phase and Catalysis Control: Tracking the Formation of Intermetallic Nanoparticles at Atomic Scale,” authored by Tao Ma, Shuai Wang, Minda Chen, Raghu Maligal-Ganesh, Lin-Lin Wang, Duane D. Johnson, Matthew J. Kramer, Wenyu Huang, and Lin Zhou; and published in Chem.

###

This work was supported in part by Laboratory Directed Research and Development funds through Ames Laboratory, and the U.S. Department of Energy Office of Science.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact
Laura Millsaps
[email protected]

Original Source

https://www.ameslab.gov/news/news-releases/scientists-capture-live-atomic-level-detail-nanoparticle-formation

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)MaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Seismic Analysis of Masonry Facades via Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.