• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Artificial intelligence sheds new light on cell developmental dynamics

Bioengineer by Bioengineer
April 1, 2019
in Science
Reading Time: 3 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

What happens inside a cell when it is activated, changing, or responding to variations in its environment? Researchers from the VIB-UGent Center for Inflammation Research have developed a map of how to best model these cellular dynamics. Their work not only highlights the outstanding challenges of tracking cells throughout their growth and lifetime, but also pioneers new ways of evaluating computational biology methods that aim to do this.

Identifying the trajectories of individual cells

Cells are constantly changing: they divide, change, or are activated by the environment. Cells can take many alternative paths in each of these processes and they have to decide which direction to follow based on internal and external clues. Studying these cellular trajectories has recently become a lot easier thanks to advances in single-cell technologies, which allows scientists to profile individual cells at unprecedented detail. Combined with computational methods, it is possible to see the different trajectories that cells take inside a living organism and have a closer look at what goes wrong in diseases.

Yvan Saeys (VIB-Ghent University), heading the research group, explains: “If you would take a random sample of thousands of cells that are changing, you would see that some are very similar, while others are really different. Trajectory inference methods are a novel class of Artificial Intelligence techniques that unveil complex structures such as cell trajectories in a data-driven way. In recent years there has been a proliferation of tools that construct such a trajectory. But the availability of a wide variety of such tools makes it very difficult for researchers to find the right one that will work in the biological system they are studying.”

Evaluating the available tools

Two researchers in the Saeys lab, Robrecht Cannoodt and Wouter Saelens, set out to bring more clarity to the field by evaluating and comparing the available tools. Robrecht Cannoodt says: “From the start, we envisioned to make the benchmark as comprehensive as possible by including almost all methods, a varied set of datasets and metrics. We included the nitty-gritty details, such as the installation procedure, and put everything together in one large figure – a funky heatmap as we like to call it.”

Wouter Saelens adds: “Apart from improving the trajectory inference field, we also attempted to improve the way benchmarking is done. In our study we ensured an easily reproducible and extensible benchmarking using the most recent software technologies such as containerization and continuous integration. In that way, our benchmarking study is not the final product, but only the beginning of accelerated software development and ultimately better understanding of our biomedical data.”

User guidelines

Based on the benchmarking results, the team developed a set of user guidelines that can assist researchers in selecting the most suitable method for a specific research question, as well as an interactive app. This is the first comprehensive assessment of trajectory inference methods. In the future, the team plans to add a detailed parameter tuning procedure. The pipeline and tools for creating trajectories are freely available on dynverse.org, and the team welcomes discussion aimed at further development.

###

Publication

A comparison of single-cell trajectory inference methods, Saelens, Cannoodt et al., Nature Biotechnology 2019
https://doi.org/10.1038/s41587-019-0071-9

Funding

Financing: This study was supported by the Fonds Wetenschappelijk Onderzoek (FWO, R.C. and W.S.) and BOF (Ghent University, H.T.).

Questions from patients

A breakthrough in research is not the same as a breakthrough in medicine. The realizations of VIB researchers can form the basis of new therapies, but the development path still takes years. This can raise a lot of questions. That is why we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: [email protected]. Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

Media Contact
Sooike Stoops
[email protected]
http://dx.doi.org/10.1038/s41587-019-0071-9

Tags: BiologyBiotechnologyTechnology/Engineering/Computer Science
Share12Tweet7Share2ShareShareShare1

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    48 shares
    Share 19 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Old Mitochondria Drive Stem Cell Niche Renewal

Tyrosine Kinase Inhibitors: New Frontiers in Colorectal Cancer

AI Advances and Challenges in Inverse Lithography

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.