• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, February 5, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How nerve cells control misfolded proteins

Bioengineer by Bioengineer
March 27, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: RUB, Marquard

Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal. In collaboration with the neurology department at the Ruhr-Ubiversität’s St. Josef-Hospital as well as colleagues at the Max Planck Institute of Biochemistry in Martinsried, an interdisciplinary team under the auspices of Professor Konstanze Winklhofer at Ruhr-Universität Bochum has identified the so-called Linear Ubiquitin Chain Assembly Complex, Lubac for short, as a crucial player in controlling misfolded proteins in cells.

The group is hoping to find a new therapeutic approach to treat neurodegenerative diseases such as Alzheimer’s, Parkinson’s or Huntington’s chorea, all of which are associated with misfolded proteins. The team headed by Professor Konstanze Winklhofer from the Department of Molecular Cell Biology in Bochum published its report in “The Embo Journal”; online preview available on 18 March 2019.

New function of protein complex

Earlier studies have revealed that the protein complex Lubac regulates signalling pathways of the innate immune response that are mediated by the transcription factor NF-kB. For example, Lubac can be recruited to trigger immune responses by binding to bacteria in the cells and activating NF-kB.

“Our study revealed that the Lubac system has a previously unknown function,” says Konstanze Winklhofer, who is also member of the Cluster of Excellence Ruhr Explores Solvation, Resolv for short. “It appears that Lubac recognises misfolded proteins as dangerous and marks them with linear ubiquitin chains, thus rendering them harmless to nerve cells.” Unlike its response to bacteria, this function of Lubac is independent of the transcription factor NF-kB.

Aggregates of misfolded proteins are toxic to cells, because they interfere with various processes. For example, they expose an interactive surface thereby sequestering and inactivating other proteins that are essential for the cell. This process disrupts the function of nerve cells and can cause cell death.

Preventing protein interactions

The research team has now decoded the mechanism described above using the huntingtin protein, the misfolding of which causes Huntington’s disease. By attaching linear ubiquitin chains to aggregated huntingtin, the aggregates are shielded from unwanted interactions in the cell and can be degraded more easily. In Huntington’s patients, the Lubac system is impaired, as the team demonstrated.

These insights were gained by combining cell biology and biochemistry methods and using high-resolution microscopy (Structured Illumination Super-Resolution Microscopy).

Mechanism works for various proteins

The protective effect of Lubac is not limited to huntingtin aggregates. The researchers also detected linear ubiquitin chains attached to protein aggregates that play a role in other neurodegenerative disorders, for example in amyotrophic lateral sclerosis.

“The attachment of linear ubiquitin chains is a highly specific process, as there is only one protein – namely a Lubac-component – that can mediate it,” explains Konstanze Winklhofer. “Based on these insights, strategies for new therapeutic approaches could be developed.”

In future studies, the team intends to identify small molecules that affect linear ubiquitination and to test if they have any positive effects on neurodegeneration. “But there is still a long way ahead until a drug can be developed,” concludes Konstanze Winklhofer.

###

Media Contact
Konstanze F. Winklhofer
[email protected]

Original Source

https://news.rub.de/english/press-releases/2019-03-27-biochemistry-how-nerve-cells-control-misfolded-proteins

Related Journal Article

http://dx.doi.org/10.15252/embj.2018100730

Tags: BiologyCell BiologyMedicine/HealthMolecular BiologyneurobiologyParkinson
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Sudanese Copts Evolve Rapid Resistance to Malaria Through Accelerated Evolutionary Process

February 5, 2026
blank

Are Returning Pumas Threatening Patagonian Penguins? New Study Uncovers the Risks

February 5, 2026

Burn Injuries: A Crucial Factor in Shaping Human Evolution, Study Reveals

February 5, 2026

Enhanced IVF Success: Innovative Transparent Culture Dishes Boost Embryo Selection Accuracy

February 4, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Tool Deciphers Brain Age, Cancer Prognosis, and Disease Indicators from Unlabeled Brain MRIs

YouTubers Passionate About Wildlife, Yet Comment Sections Lack Calls for Conservation Action

Obstacles to Reporting Domestic Violence in Healthcare

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.