• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New cellulose-based material gives three sensors in one

Bioengineer by Bioengineer
March 25, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A multiparameter Pressure-Temperature-Humidity Sensor based on Mixed Ionic-Electronic Cellulose Aerogels

IMAGE

Credit: Thor Balkhed

Cellulose soaked in a carefully designed polymer mixture acts as a sensor to measure pressure, temperature and humidity – at the same time! The measurements are completely independent of each other. The sensor may be highly significant in fields such as robotics, healthcare and security.

The ability to measure pressure, temperature and humidity is important in many applications, such as monitoring patients at home, robotics, electronic skin, functional textiles, surveillance and security, to name just a few. Research until now has targeted integrating the different sensors into the same circuit, and this has presented several technical challenges, not least concerning the interface to the user.

Scientists in the Laboratory of Organic Electronics at Linköping University have now, under the leadership of Professor Xavier Crispin, successfully combined all three measurements into a single sensor.

This has been made possible by the development of an elastic aerogel of polymers that conducts both ions and electrons, and subsequent exploitation of the thermoelectric effect. A thermoelectric material is one in which electrons move from the cold side of the material towards the warm side, and in this way create a voltage difference.

When nanofibres of cellulose are mixed with the conducting polymer PEDOT:PSS in water and the mixture is freeze-dried under vacuum, the resulting material has the same structure as a washing sponge, an aerogel. Adding a substance known as polysilane causes the sponge to become elastic. Applying an electrical potential across the material gives a linear current increase, typical of any resistor. But when the material is subject to a pressure, its resistance falls and electrons flow more readily through it.

Since the material is thermoelectric, it is also possible to measure temperature changes: the larger the temperature difference between the warm and cold sides, the higher the voltage developed. The humidity affects how rapidly the ions move from the warm side to the cold one. If the humidity is zero, no ions are transported.

“What is new is that we can distinguish between the thermoelectric response of the electrons (giving the temperature gradient) and that of the ions (giving the humidity level) by following the electrical signal versus time. That is because the two responses occur at different speeds”, says Xavier Crispin, professor in the Laboratory of Organic Electronics and principal author of the article published in Advanced Science.

“This means that we can measure three parameters with one material, without the different measurements being coupled”, he says.

Shaobo Han, doctoral student, and Senior Lecturer Simone Fabiano at the Laboratory of Organic Electronics, have also found a way to separate the three signals from each other, such that each can be simply read individually.

“Our unique sensor also prepares the way for the internet of things, and brings lower complexity and lower production costs. This is an advantage not least in the security industry. A further possible application is placing sensors into packages with sensitive goods”, says Simone Fabiano.

###

Financiers of the research include the Knut and Alice Wallenberg Foundation (the Tail of the Sun project), the Wallenberg Wood Science Center, the Vinnova Digital Cellulose Center, and the government’s strategic investment into advanced functional materials at Linköping University, AFM.

The article: A multiparameter Pressure-Temperature-Humidity Sensor based on Mixed Ionic-Electronic Cellulose Aerogels, Shaobo Han, Naveed Ul Hassan Alvi, Lars Granlöf, Hjalmar Granberg, Magnus Berggren, Simone Fabiano and Xavier Crispin, Advanced Science 2019. DOI 10.1002/advs.201802128

Contact: Xavier Crispin, [email protected], +46 11 36 34 85
Simone Fabiano, [email protected], +46 11 36 36 33

Media Contact
Xavier Crispin
[email protected]

Original Source

https://liu.se/en/news-item/nytt-cellulosa-baserat-material-ger-tre-sensorer-i-en

Related Journal Article

http://dx.doi.org/10.1002/advs.201802128

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesMaterialsPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Toward a Sustainable Approach for Ethylene Production

October 29, 2025
Join Thousands of Researchers in Houston Exploring the Latest Advances in Fluid Dynamics

Join Thousands of Researchers in Houston Exploring the Latest Advances in Fluid Dynamics

October 29, 2025

Enhancing Hygiene and Usability of Menstrual Cups: A Scientific Breakthrough

October 29, 2025

Innovative Carbon Support Enhances Performance and Longevity of Low-Platinum Fuel Cells

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Promising New Insights into Treating Immune ‘Cold’ Tumors

Advancing Toward a Sustainable Approach for Ethylene Production

USC Team Develops Artificial Neurons That Mimic Biological Functions to Enhance Computer Chip Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.