• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

4D-printed materials can be stiff as wood or soft as sponge

Bioengineer by Bioengineer
March 22, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rutgers engineers’ unique smart materials change shape as temperatures change

Credit: Chen Yang/Rutgers University-New Brunswick.

Imagine smart materials that can morph from being stiff as wood to as soft as a sponge – and also change shape.

Rutgers University-New Brunswick engineers have created flexible, lightweight materials with 4D printing that could lead to better shock absorption, morphing airplane or drone wings, soft robotics and tiny implantable biomedical devices. Their research is published in the journal Materials Horizons.

3D printing, also known as additive manufacturing, turns digital blueprints to physical objects by building them layer by layer. 4D printing is based on this technology, with one big difference: it uses special materials and sophisticated designs to print objects that change shape with environmental conditions such as temperature acting as a trigger, said senior author Howon Lee, an assistant professor in the Department of Mechanical and Aerospace Engineering. Time is the fourth dimension that allows them to morph into a new shape.

“We believe this unprecedented interplay of materials science, mechanics and 3D printing will create a new pathway to a wide range of exciting applications that will improve technology, health, safety and quality of life,” Lee said.

The engineers created a new class of “metamaterials” – materials engineered to have unusual and counterintuitive properties that are not found in nature. The word metamaterials is derived from the Greek word “meta,” which means “higher” or “beyond.”

Previously, the shape and properties of metamaterials were irreversible once they were manufactured. But the Rutgers engineers can tune their plastic-like materials with heat, so they stay rigid when struck or become soft as a sponge to absorb shock.

The stiffness can be adjusted more than 100-fold in temperatures between room temperature (73 degrees) and 194 degrees Fahrenheit, allowing great control of shock absorption. The materials can be reshaped for a wide variety of purposes. They can be temporarily transformed into any deformed shape and then returned to their original shape on demand when heated.

This shows how 4D-printed smart materials can morph from stiff to soft and also change shape. Video by Chen Yang/Rutgers University-New Brunswick.

The materials could be used in airplane or drone wings that change shape to improve performance, and in lightweight structures that are collapsed for space launches and reformed in space for a larger structure, such as a solar panel.

Soft robots made of soft, flexible and rubbery materials inspired by the octopus could have variable flexibility or stiffness that is tailored to the environment and task at hand. Tiny devices inserted or implanted in people for diagnosis or treatment could be temporarily made soft and flexible for minimally invasive and less painful insertion into the body, Lee said.

###

The study’s lead author is Chen Yang, a doctoral student in Lee’s lab. Co-authors include Manish Boorugu, Andrew Dopp, Jie Ren, Raymond Martin and Daehoon Han – all current or former Rutgers students – and Professor Wonjoon Choi at the Korea University.

Media Contact
Todd Bates
[email protected]

Original Source

https://news.rutgers.edu/4d-printed-materials-can-be-stiff-wood-or-soft-sponge/20190320#.XJKlYKBKi70

Related Journal Article

http://dx.doi.org/10.1039/C9MH00302A

Tags: Biomedical/Environmental/Chemical EngineeringInternal MedicineMaterialsMechanical EngineeringNanotechnology/MicromachinesPublic HealthRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share14Tweet8Share2ShareShareShare2

Related Posts

blank

Molecular Detection of Toxoplasma and Neospora in Milk

November 20, 2025
blank

Capsaicin Alters Arginine Kinase Expression in Trypanosoma

November 20, 2025

Detecting Theileria, Babesia in Southern Xinjiang Cattle

November 20, 2025

Blue Catfish Sexual Development: Hormones and Genes

November 20, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Molecular Detection of Toxoplasma and Neospora in Milk

Innovative Two-Step Strategy Targets Claudin-6 for Cancer Therapy

SOAT1 Modulates CD8+ T Cell Immune Response in Ovarian Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.