• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ejecting flagella could help microbes save energy during nutrient depletion

Bioengineer by Bioengineer
March 19, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Morgan Beeby, [email protected]

In favorable conditions, many bacteria propel themselves to food sources and other sites of interest using whip-like molecular propellers known as flagella. However, according to new research published on March 19 in the open-access journal PLOS Biology, by Josie Ferreira and colleagues of Imperial College London, members of the bacterial class Gammaproteobacteria eject their flagella when nutrients are scarce.

These findings suggest a previously unknown mechanism for microbes to save energy in lean times. Earlier research has shown that bacteria switch from a mobile to stationary phase in the face of nutrient depletion, but it has been unclear how they deactivate their large, energy-intensive flagella.

The authors of the new study used electron microscopy to get a 3-D look at Gammaproteobacteria that have one or more flagella clustered at one end of each cell. Focusing on two species, Plesiomonas shigelloides and Vibrio fischeri, they saw that microbes living in a nutrient-abundant environment had few partial flagella, but microbes in nutrient-depleted conditions had many more partial flagellar structures.

Further experiments confirmed that these partial structures were relics of flagella that had been ejected, and that a nutrient-depleted environment was indeed the trigger. So, like mountaineer Aron Ralston cutting off his own arm to avoid certain death in the film 127 Hours, bacteria cut off their own tails to avoid starvation.

Flagella are driven by tiny motors embedded in the cell membrane, so ejecting the flagella runs the risk of leaving empty motors with wide-open portals that would allow spillage of the insides of the cell into the environment. Intriguingly, the researchers found that an unidentified protein plugs up the relics of flagellar motors, and they hypothesize that this plug prevents leakage of cellular contents through the resulting hole in the cell membrane.

In the future, additional research could clarify the molecular details of the ejection process, including the identity of the plug protein.

###

Peer-reviewed / Experimental Study / Cells

In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000165

Citation: Ferreira JL, Gao FZ, Rossmann FM, Nans A, Brenzinger S, Hosseini R, et al. (2019) γ-proteobacteria eject their polar flagella under nutrient depletion, retaining flagellar motor relic structures. PLoS Biol 17(3): e3000165. https://doi.org/10.1371/journal.pbio.3000165

Funding: This work was supported by a Medical Research Council grant MR/P019374/1 to MB, a Medical Research Council PhD Doctoral Training Partnership award grant number MR/K501281/1 to JLF, a Research fellowship of the German Research Foundation (DFG project number 385257318) to FMR, Grant TRR174 “Prokaryotic Cell Biology” from German Research Foundation (DFG) to KMT, Netherlands Organisation for Scientific Research (NWO) BBOL.737.016.004 to AB, a German Academy of Sciences Leopoldina (Fellowship Programme LPDS 2017-01) to SB, and NIH (AM, grants R01-GM051350 and R35-GM118108) to PBR. PBR is also supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001143), the UK Medical Research Council (FC001143), and the Wellcome Trust (FC001143). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact
Morgan Beeby
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.pbio.3000165

Tags: BacteriologyBiochemistryBiologyCell BiologyMicrobiologyMolecular BiologyNutrition/NutrientsPhysiology
Share18Tweet8Share2ShareShareShare2

Related Posts

Bright Excitons Enable Optical Spin State Control

Bright Excitons Enable Optical Spin State Control

August 3, 2025
blank

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    49 shares
    Share 20 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predicting Colorectal Cancer Using Lifestyle Factors

Optical Matrix Multipliers Revolutionize Image Encoding and Decoding

Voltage Imaging Uncovers Hippocampal Memory Inhibition Dynamics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.