• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Using Thoreau, scientists measure the impact of climate change on wildflowers

Bioengineer by Bioengineer
March 14, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study published in Ecology Letters is using observations made by Henry David Thoreau–19th-century American naturalist, social reformer, and philosopher–to explore the effects of climate change on tree leaf-out and, as a result, the emergence of spring wildflowers.

The paper was coauthored by Susan Kalisz, head of the University of Tennessee, Knoxville’s Department of Ecology and Evolutionary Biology, and Mason Heberling, a National Science Foundation postdoctoral research fellow affiliated with UT. Researchers from the University of Maine, Boston University, and Syracuse University also participated in the research.

The study draws on scientific observations initiated by Thoreau in Concord, Massachusetts, in the 1850s. These observations, combined with current research, include tree and wildflower leaf-out dates measured for 37 separate years between 1852 to 2018.

“Leaf-out” refers to the time of spring in which a species of plant begins producing leaves. A change in the timing of this stage has downstream consequences for other elements of the ecosystem.

Temperatures in Concord have warmed by 3 degrees Celsius (5 degrees Fahrenheit) over the past century. In this same time period, tree and wildflower leaf-out dates have shifted significantly.

“Wildflowers are now leafing out about one week earlier than 160 years ago, but the trees are leafing out two weeks earlier,” said Caitlin McDonough MacKenzie of Boston University. “Understory wildflowers need the sunny conditions before the trees leaf out for their energy budgets.”

To understand the impact that tree leaf-out could have on wildflower growth, the research team compared the Concord observations to photosynthesis data collected by Heberling and Kalisz in a forest in Fox Chapel, Pennsylvania, as part of a long-term field experiment.

“Long-term research is invaluable for detecting changes that cannot be quantified over shorter time scales,” said Kalisz.

By adapting these measurements, the team calculated how temperature-driven shifts in tree leaf-out have affected wildflowers from Thoreau’s time until now.

“Combining our work from Pittsburgh with Thoreau’s data revealed an overlooked yet critical implication of how our changing climate is affecting native wildflowers beloved by so many people” Heberling said.

The combined analysis shows that wildflowers and trees differ in the way their leaf-out patterns respond to climate change, and those differences could already be hindering wildflower abundance and flowering, with greater effects in coming years.

As the climate warms, the window of time between wildflower emergence and tree leaf-out will likely shorten further, leaving wildflowers less time to photosynthesize in the spring. Current climate models predict a temperature increase of 2.5 to 4.5 degrees Celsius (4 to 8 degrees Fahrenheit) in the northeastern US by 2080–potentially more than double the temperature increase that has been observed over the past century.

###

CONTACT:

Andrea Schneibel (865-974-3993, [email protected])

Will Wells ([email protected])

Media Contact
Andrea Schneibel
[email protected]
http://dx.doi.org/10.1111/ele.13224

Tags: BiologyClimate ChangeEcology/EnvironmentEvolutionTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.