• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers show how coffee growers can optimize profits, sustainably

Bioengineer by Bioengineer
March 12, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mixture of conventional and shade-grown methods recommended

IMAGE

Credit: Guillermo Santos

Coffee has huge importance to many smallholder farmers around the world. The success of a year’s coffee crop can mean the difference between having enough cash in hand for buying food and watching your household go hungry. For many, it is the crucial component of their food security, even though coffee is not an edible crop.

As is true for many agricultural products, the process for growing coffee is complex. Increased use of fertilizer and pesticides will likely lead to higher crop yields, but at significant cost to wildlife populations and human health. Using fewer agrochemicals is more environmentally friendly, but requires farmers to face increased risks of losing crops to pests and disease. A forthcoming paper led by researcher Juan Nicolás Hernandez-Aguilera, a postdoctoral scientist at the International Research Institute for Climate and Society, suggests this trade-off may not be as straightforward as previously thought, and that farmers could be better off financially if they used shade-growing practices for part of their production. The paper will be published in the May issue of the journal Ecological Economics.

No previous study has quantified the economic trade-offs a smallholder farmer would experience in shifting from conventional coffee-growing to shade-grown. Hernandez-Aguilera and his colleagues developed a model to evaluate the financial costs and benefits for farmers. They examined a number of factors, including the cost of planting new trees, the price premiums that coffee consumers are willing to pay, and the potential yields farmers could see. The model suggests that farmers can optimize their coffee profits by converting a third to two-thirds of their acreage to shade-grown production.

Usually, coffee is grown in homogenous fields of trees in full sun. Hernandez-Aguilera and his coauthors from Cornell University examined the merits of an alternative method of growing coffee, in the understory of shade-bearing trees. Shade-grown production systems mimic a forest structure and provide better habitats for birds than do full-sun systems. Both the birds and the shade trees provide ecosystem services to the coffee plantations, which can replace fertilizer and pesticides and save the farmer money. Birds prey on insect pests; some estimates suggest that a single bird could help save as much as 65 pounds of coffee per hectare every year from pests. Additionally, shade trees in shade-grown coffee plantations, often the species Inga edulis, fix nitrogen in the soil, providing the coffee trees additional nutrients. Hernandez-Aguilera notes that other services provided by this system include a reduction in temperatures beneath the shade trees, a crucial adaptation strategy for climate change.

Hernandez-Aguilera points out that shade-grown coffee beans are often considered higher quality, and can provide a price premium to farmers that offsets the comparatively lower yields of the shade-grown system. “Our estimates can guide the design of market-based mechanisms that aim to promote sustainable practices in coffee,” Hernandez-Aguilera says. “That said, the effective implementation of these instruments heavily relies on a better promotion and knowledge of the interactions between shade-grown coffee, environmental conservation and product quality among coffee consumers.”

Coffee is also an important crop in many of the developing countries in which IRI is currently working. Hernandez-Aguilera’s study paves the way for further research into how to make growing coffee a more secure and financially stable source of income for farmers who often operate on tight margins under highly variable climate conditions. Through IRI’s work with Adapting Agriculture to Climate Today, for Tomorrow (ACToday), a part of Columbia World Projects, careful consideration is being given to coffee farmers in Vietnam, Guatemala, Colombia, and Ethiopia.

“This paper is a great example of the kind of work ACToday is already catalyzing in our pilot countries,” says Ángel Muñoz, the country lead for Guatemala and Colombia on the ACToday project. “This kind of work encourages our partners to ask key questions about how they can maximize income and promote sustainable practices in ways that are harmonious for the environment and that foster the conservation of biodiversity.”

###

Scientist contact: Juan Nicolás Hernandez-Aguilera

[email protected].

Media Contact
Francesco Fiondella
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.ecolecon.2019.01.015

Tags: Agricultural Production/EconomicsAgricultureClimate ChangeFertilizers/Pest ManagementForestryNaturePlant SciencesTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.