• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UNH researchers identify role gender-biased protein may play in autism

Bioengineer by Bioengineer
March 11, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

DURHAM, N.H. – Researchers at the University of New Hampshire are one step closer to helping answer the question of why autism is four times more common in boys than in girls after identifying and characterizing the connection of certain proteins in the brain to autism spectrum disorders (ASD).

“Our study is the first to look at the gender-biased regulation of proteins in the brain and how they may play a role in affecting abnormal changes in the body that results in autism,” said Xuanmao (Mao) Chen, assistant professor of neurobiology. “Our findings point to a new direction for autism research and suggest promising possibilities for creating novel treatment strategies.”

In the study, recently published in the journal Frontiers in Cellular Neuroscience, the researchers looked at an enzyme called AC3 which is genetically connected to major depressive disorder (MDD), obesity, and autism spectrum disorders (ASD). However, not much is known about how AC3 functions in the brain. What is known is that many neurodevelopmental disorders or psychiatric diseases, such as depression and autism, exhibit profound differences between males and females, known as sexual dimorphism. For example, females have a higher risk of depression, whereas autism affects more males, with a boy to girl ratio of four to one. The problem is that it is unclear what causes the differences.

The researchers took a closer look at the phosphorylation in the brain, a process when groups of chemicals called phosphates attach to proteins to regulate them, to see which were influenced based on gender. They identified 204 proteins that were more highly regulated in females than in males. Of those, a large percentage (31%) were associated with autism.

“Our results suggest that proteins in the female brain, particularly autism-related proteins, are more tightly regulated than those in the male brain possibly helping to prevent the development of autism in females,” said Chen.

The researchers point to evolution for possibly playing a part in how these proteins behave based on the key roles or functions of each sex. The female role has traditionally been multi-tasking several activities like childrearing, caring for the family, the home, and preparing meals whereas male tasks were more specifically focused on functions like hunting and gathering. You can see this highly focused trait in autistic males who are very smart but tend to be fixated on one thing and not interested in, or cannot handle, other social interactions.

Chen says that this research is still in the early phase with mouse models and more studies are needed, but he is hopeful that it may open up a new research direction and one day could possibly lead to a new pharmacological treatment.

###

Contributing to these findings are Yuxin Zhou, doctoral candidate; Liyan Qiu, research scientist; and Ashley Sterpka, doctoral candidate, Feixia Chu, associate professor, all at UNH, and Haiying Wang, assistant professor at the University of Connecticut.

This work was supported by the National Institutes of Health (NIH) research funding, NIH COBRE program, and a Cole Neuroscience and Behavioral Faculty Research award.

The University of New Hampshire inspires innovation and transforms lives in our state, nation and world. More than 16,000 students from all 50 states and 71 countries engage with an award-winning faculty in top-ranked programs in business, engineering, law, health and human services, liberal arts and the sciences across more than 200 programs of study. As one of the nation’s highest-performing research universities, UNH partners with NASA, NOAA, NSF and NIH, and receives more than $110 million in competitive external funding every year to further explore and define the frontiers of land, sea and space.

Media Contact
Robbin Ray
[email protected]

Related Journal Article

https://www.unh.edu/unhtoday/news/release/2019/03/11/unh-researchers-identify-role-gender-biased-protein-may-play-autism
http://dx.doi.org/10.3389/fncel.2019.00034

Tags: BiologyCell BiologyneurobiologySex-Linked Conditions
Share12Tweet8Share2ShareShareShare2

Related Posts

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

August 23, 2025
Link Between Type 2 Diabetes and Heart Failure

Link Between Type 2 Diabetes and Heart Failure

August 23, 2025

Exploring Type 3 APS, T1DM, and LADA Insights

August 23, 2025

Thermal Vests Alleviate Mealtime Anxiety in Anorexia Patients

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leaves Release Ice-Nucleating Particles in Rain

Advancing Supercapacitor Electrodes with Doped BiFeO3 Nanoparticles

Capturing a Split-Second Glimpse of Cellular Activity in Freeze-Frame

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.