• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Promising strategy to fight the most deadly brain tumor in children

Bioengineer by Bioengineer
March 4, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Treatment slows tumor growth and increases survival in animal model of diffuse intrinsic pontine glioma (DIPG)

A study published in Nature Communications found that an inhibitor of an enzyme called ACVR1 slows tumor growth and increases survival in an animal model of diffuse intrinsic pontine glioma (DIPG) – the most deadly brain tumor in children. Currently, there are no approved drugs for treating DIPG. This research opens the door to a promising new treatment strategy.

“Our results are encouraging and suggest that it might be reasonable to test an inhibitor of this enzyme in a clinical trial,” says senior author Oren Becher, MD, from Stanley Manne Children’s Research Institute at Ann & Robert H. Lurie Children’s Hospital of Chicago and Associate Professor of Pediatrics at Northwestern University Feinberg School of Medicine. “Prior to that, we need to evaluate different ACVR1 inhibitors in animal models to make sure we bring the most safe and effective agent to trials with children.”

In 2014, Dr. Becher’s lab co-discovered that ACVR1 mutations are found in approximately 25 percent of DIPGs, leading the enzyme to be overactive. In the current study, Dr. Becher and colleagues demonstrate for the first time in an animal model that this enzyme mutation cooperates with a histone mutation (H3.1 K27M) found in 20 percent of DIPGs. Together, these mutations are important in initiating tumor development.

Histone is a protein that acts like a spool for DNA, helping to package the six-foot long DNA strand into the tiny nucleus of every cell. Histones also help regulate which genes turn on and off, a process that goes awry when there is a histone mutation.

“Our future work will examine why and how the ACVR1 and histone mutations work together to trigger DIPG development,” says Dr. Becher, who also is the Rory David Deutsch Malignant Brain Tumor Research Scholar. “Greater insight into this process will bring us closer to identifying a successful therapy for children with DIPG.”

###

This work was supported by the Damon Runyon Cancer Research Foundation, the Stewart Trust Foundation, National Institute of Health grants (R01 CA197313, K02-NS086917), Madox’s Warriors, Fly the Kite Foundation, Cristian Rivera Foundation, and John McNicholas Pediatric Brain Tumor Foundation.

Research at Ann & Robert H. Lurie Children’s Hospital of Chicago is conducted through the Stanley Manne Children’s Research Institute. The Manne Research Institute is focused on improving child health, transforming pediatric medicine and ensuring healthier futures through the relentless pursuit of knowledge. Lurie Children’s is ranked as one of the nation’s top children’s hospitals in the U.S.News & World Report. It is the pediatric training ground for Northwestern University Feinberg School of Medicine. Last year, the hospital served more than 212,000 children from 49 states and 51 countries.

Media Contact
Vita Lerman
[email protected]

Tags: cancerMedicine/HealthPediatrics
Share12Tweet8Share2ShareShareShare2

Related Posts

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.