• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Lab study: Parkinson’s researchers test a new approach against motor disorders

Bioengineer by Bioengineer
February 27, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists of the German Center for Neurodegenerative Diseases (DZNE) and the University Medical Center Goettingen (UMG) have been able to alleviate motor disorders in mice that resemble those seen in Parkinson’s patients. The rodents were treated with a substance that affects the neurons and immune cells of the brain. If this novel approach proves to be successful in further laboratory studies, it could possibly be tested in clinical trials. The findings are published in the Journal of Neuroscience.

In Parkinson’s disease, certain neurons in the brain gradually die off. This so-called “neurodegeneration” has manifold potential consequences that range from serious digestive disorders to dementia. However, the typical hallmark of Parkinson’s disease is motor impairment, as patients suffer from tremor and stiffness of their arms and legs. Although some of these symptoms can be alleviated, current treatments cannot halt the loss of brain cells. Therefore, there is presently no therapy available to slow down or even stop the course of the disease.

Immune cells of the brain

The current study not only focused on neurons but also on the immune cells of the brain. The latter (called “microglia”) act as a protectant against harmful agents and pathogens. However, in Parkinson’s disease a chronic inflammation develops. As a result of this persistent immune reaction, the microglia might release metabolites that damage neurons and ultimately cause their death. “We therefore used an experimental drug that was known to have an anti-inflammatory effect,” says Prof. Anja Schneider, head of a research group at the DZNE in Bonn. “This compound is able to penetrate into the microglia and flip a molecular switch that attenuates the inflammatory reaction. The drug has already been tested in clinical studies on humans as a possible remedy for anxiety disorders. Therefore, data on this substance exists that proves its safety and tolerability in humans.”

Schneider and colleagues in Bonn and Goettingen investigated the effect of this substance called “Emapunil” on mice. These rodents showed movement disorders caused by the loss of neurons in the so-called substantia nigra. This brain area is also affected in Parkinson’s patients. Treating the mice with Emapunil alleviated the symptoms. “Animals that received the drug had a better command of their motion compared to the untreated animals in a control group,” says Prof. Tiago Outeiro, a researcher at UMG and co-author of the current study.

The scientists identified potential causes. “With our study we were able show that Emapunil has a protective effect on neurons. Different mechanisms appear to be involved”, explains Outeiro. “This drug acts on the microglia and dampens inflammatory reactions. Basically, this was already known. However, we now discovered that the compound also affects neurons directly. Especially in these cells Emapunil reduces the so-called unfolded protein response. This is a stress reaction that can lead to cell death.”

A molecular receptor

From previous investigations it was already known that Emapunil binds to a molecule called TSPO (translocator protein). This receptor is expressed in neurons and microglia. “Our results suggest that TSPO could basically be a target for drugs against neurodegenerative diseases,” says Prof. Markus Zweckstetter, a scientist at the DZNE’s Goettingen site and at the Max Planck Institute for Biophysical Chemistry.

The researchers propose to further investigate involved mechanisms. “In the lab only partial aspects of Parkinson’s disease can be simulated,” DZNE scientist Schneider says. “Therefore, we would like to suggest that the current results be tested in further laboratory studies and using other disease models. If acting upon TSPO proves to be successful, this strategy could be tested in clinical studies on Parkinson’s disease.”

###

Original publication:

Jing Gong, Eva M. Szego et al. (2019): “Translocator protein ligand protects against neurodegeneration in the MPTP mouse model of Parkinsonism”, JNeurosci – the Journal of Neuroscience, DOI: 10.1523/JNEUROSCI.2070-18.2019

Media Contact
Marcus Neitzert
[email protected]

Related Journal Article

https://www.dzne.de/en/news/public-relations/press-releases/press/detail/lab-study-parkinsons-researchers-test-a-new-approach-against-motor-disorders/
http://dx.doi.org/10.1523/JNEUROSCI.2070-18.2019

Tags: Medicine/HealthParkinson
Share12Tweet7Share2ShareShareShare1

Related Posts

Gut Microbiota Alterations Determine Susceptibility to AIG-Associated Neuroendocrine Tumors

October 8, 2025

Circular RNAs in Mammalian Follicle Development: Insights

October 8, 2025

Surgical Menopause May Prompt Early Workforce Exit in Women, But Hormone Therapy Shows Promise

October 8, 2025

Patient Resistance to Nursing Procedures in China

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1045 shares
    Share 418 Tweet 261
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    78 shares
    Share 31 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut Microbiota Alterations Determine Susceptibility to AIG-Associated Neuroendocrine Tumors

Circular RNAs in Mammalian Follicle Development: Insights

Surgical Menopause May Prompt Early Workforce Exit in Women, But Hormone Therapy Shows Promise

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.