• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mini tumors could help identify personalized treatments for people with rare cancers

Bioengineer by Bioengineer
February 25, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New technique developed at UCLA can screen hundreds of drugs using patients’ own cells

UCLA scientists have developed a new method to quickly screen hundreds of drugs in order to identify treatments that can target specific tumors.

The approach could help scientists understand how a person’s tumor would respond to a certain drug or drug combination, and it could help guide treatment decisions for people with rare and hard-to-treat cancers. A paper detailing the new technique was published in Communications Biology.

“We always focus on how we need new and better drugs to treat cancer,” said Alice Soragni, the senior author of the study and a scientist at the UCLA Jonsson Comprehensive Cancer Center. “While that’s true, we also have many drugs currently available — we just haven’t been able to figure out who is going to respond to which ones for most of them.”

The screening method uses patients’ own cells, collected during surgery, to create miniature tumor organoids.

Organoids are simpler, smaller versions of bodily organs or tumors that scientists can grow in a lab to replicate the full-function structures; researchers create them to study diseases and possible treatments.

“We obtain cancer cells directly from surgery and that same day we can seed them to generate tumor organoids,” said Soragni, an assistant professor in the division of hematology/oncology at the David Geffen School of Medicine at UCLA and member of the Molecular Biology Institute at UCLA. “We created a miniaturized system that allows the setup of hundreds of wells for testing with minimal manipulation.”

After the tumor organoids are established, typically in three to five days, the lab screens hundreds of drugs to determine which ones are effective. The approach developed by Soragni’s lab uses an automated feed — instead of testing one drug at a time, scientists use robots to simultaneously screen hundreds of different treatments. The method is fast and efficient: The entire process, from surgery to final results, can take as little as one to two weeks.

To test the technique, Soragni’s team took cells from four patients — three with ovarian cancer and one with peritoneal cancer — to grow tumor organoids. The test enabled the researchers to produce personalized snapshots of which drugs were effective for each patient’s organoids.

For example, one of the four participants in the study was a woman with an extremely rare type of ovarian cancer. (The specific subtype of cancer is diagnosed in fewer than 200 U.S. women each year.) The organoids developed from her cancer cells responded to a class of drugs called cyclin-kinase inhibitors, which can target cancer by preventing it from growing. Soragni said there are currently no known biomarkers to predict the effect of the specific cyclin-kinase inhibitors identified by the screening on tumor growth. So without the test, it would have been impossible to know that the drugs would work on that specific subtype of cancer.

For many rare types of cancer, scientists know little about drug susceptibilities. But being able to create models of rare tumors in the lab can help scientists identify patients who could benefit the most from a specific treatment. In addition to identifying personalized treatments, the technique could also help scientists select patients to participate in clinical trials for potential new cancer therapies.

“This could become a powerful tool to help guide therapies for people who really have no known treatment options left,” Soragni said.

###

The study’s first author is Nhan Phan, a visiting graduate student researcher through the UCLA-Department of Energy Center for Global Mentoring. The other authors are Jenny Hong, Bobby Tofig, Matthew Mapua, David Elashoff, Neda Moatamed, Jin Huang, Dr. Sanaz Memarzadeh and Robert Damoiseaux, all of UCLA.

The research was supported by a Worldwide Cancer Research grant. Additional support was provided by the Hirshberg Foundation, a National Institutes of Health/National Center for Advancing Translational Science grant, the UCLA Specialized Program of Research Excellence in Prostate Cancer, and an American Association for Cancer Research – Millennium Fellowship in Prostate Cancer.

Media Contact
Denise Heady
[email protected]

Tags: cancerMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Key Genetic Variants Linked to BMI in Estonians

October 8, 2025

Sexual Harassment in Saudi Female Nursing Students: Study

October 8, 2025

Leuprolide’s Impact on Central Precocious Puberty in Children

October 8, 2025

Wild Boars: Key Virus Spreaders in Wildlife, Livestock

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1083 shares
    Share 433 Tweet 271
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Genetic Variants Linked to BMI in Estonians

Extracellular Vesicles: New Frontiers in Cancer Care

Sexual Harassment in Saudi Female Nursing Students: Study

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.