• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Topological defects could be key to future nano-electronics

Bioengineer by Bioengineer
February 25, 2019
in Science
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ferroic and multiferroic topological structures reviewed in Nature Materials

IMAGE

Credit: FLEET

The connection from fridge magnets to cutting edge materials science is shorter than what one might expect. The reason why a magnet sticks to your fridge is that electronic spins or magnetic moments in the magnetic material spontaneously align or order in one direction, which enables it to exert an attractive force to the steel door of your fridge and reminds you to buy milk.

Magnets are one type of materials with such built-in order. A ‘topological defect’ in such a material occurs as a discontinuity in this order, i.e. a boundary region where the order does not seamlessly transition from one area to another. These topological structures form naturally or can be highly engineered in advanced functional materials.

An article published this week in the leading journal Nature Materials by FLEET CI Prof Jan Seidel outlines emerging research into different types of ‘defective’ order, i.e. topological structures in materials, and their potential highly interesting applications in nanotechnology and nanoelectronics.

Seidel was invited by the journal editor to review current and discuss future research on domain walls and related topological structures.

Although known for a long time, domain walls as one type of topological structure have only been intensively studied in detail over recent years. It is only with recent developments in high-resolution electron microscopy (HREM) and scanning probe microscopy (SPM) that it has been shown that they can significantly affect macroscopic materials properties, and even more interestingly, that they can exhibit intrinsic properties of their own. Research in this field pioneered in part by Prof Seidel has grown extensively in the last few years and now has entire conferences dedicated to it, such as the annual International Workshop on Topological Structures in Ferroic Materials (TOPO), for which the first meeting was held in 2015 in Sydney.

Nanoelectronics based on topological structures was published in Nature Materials on 20 February 2019. Prof Seidel acknowledges funding support by the Australian Research Council (ARC) through Discovery Grants and the ARC Centre of Excellence in Future Low Energy Electronics Technologies (FLEET).

Prof Jan Seidel is a Professor at the School of Materials Science and Engineering at UNSW Sydney. Contact [email protected]

FLEET is an ARC-funded research centre bringing together over a hundred Australian and international experts to develop a new generation of ultra-low energy electronics, motivated by the need to reduce the energy consumed by computing. More information at http://www.FLEET.org.au @FLEETCentre

###

Media Contact
Errol Hunt
[email protected]

Original Source

https://www.fleet.org.au/blog/topological-defects-key-to-future-nanoelectronics/

Related Journal Article

http://dx.doi.org/10.1038/s41563-019-0301-z

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMaterialsNanotechnology/MicromachinesResearch/DevelopmentSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    50 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.