• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Looking behind a rare brain disease for clues to treat more common mental disorders

Bioengineer by Bioengineer
February 15, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers use genetic manipulation techniques to highlight how the function of a protein can lead to neurodevelopmental delays

IMAGE

Credit: Katsuhiko Tabuchi, Shinshu University, Japan

Researchers have clarified, for the first time, the mechanism behind a very rare brain disorder called MICPCH (microcephaly, disproportionate pontine and cerebellar hypoplasia) syndrome in animal models. Information gleaned from this study could also inform research into other, more common neurological diseases such as mental retardation, epilepsy, and autism.

MICPCH has only affected a total of 53 females and seven males worldwide so far. It is characterized by several developmental symptoms including small head size, slowed growth, cognitive delays, epilepsy, seizures, vision and hearing problems, decreased muscle tone, and autism. MICPCH is linked to irregularities, or mutations, on the X-chromosome that eventually lead to the chromosome’s inactivation.

The study was published in the January 4th, 2019 edition of the journal Molecular Psychiatry.

Brain cells, or neurons, constantly communicate by sending messages to one another. There are two types of neurons in the brain: those that increase activity in other cells (excitatory neurons) and those that decrease it (inhibitory neurons). The mechanism behind keeping the balance between excitation and inhibition in the brain is very similar to that of a thermostat that is used to maintain a balanced temperature in a home. This mechanism is important because imbalances between excitation and inhibition can cause several serious disorders such as epilepsy and autism. One of the most important molecules that maintains the balance between excitation and inhibition is a protein found within the outer membrane of neurons, called the calcium/calmodulin-dependent serine protein kinase (CASK). Mutations in the gene that produce CASK therefore lead to several neurodevelopmental disorders such as mental retardation. A lack of the protein in the brain has been found to cause MICPCH syndrome.

“The aim of the study was to understand the pathophysiology of CASK-deficiency disorders in females, such as MICPCH syndrome, which are supposed to be influenced by X-chromosome inactivation,” said corresponding author Katsuhiko Tabuchi, a professor in the Department of Molecular and Cellular Physiology at the Institute of Medicine, Academic Assembly at Shinshu University in Nagano, Japan.

However, the details of CASK-deficiency consequences have thus far been difficult to study, as mice that completely lack the protein die before they are developed enough to study.

In order to understand the mechanism behind the CASK-deficiency, researchers at Shinhsu University in Japan and Kafr Elsheikh University in Egypt have used gene manipulation techniques that shut off the CASK gene through X-chromosome inactivation in female mice without lethal consequences.

They found that neurons that lack CASK have a disrupted excitation and inhibition balance. They also found that this is because of a decrease in concentration of a specific receptor on the membrane that receives signals from other neurons. When the receptor concentration was increased, the excitatory and inhibitory balance was restored again, leading the researchers to believe that the receptor plays a central role in the mechanism in CASK-deficient neurons.

In the future, the researchers hope to address the effects of a CASK-deficiency in even greater detail by looking at its effects on the neural circuitry. “We hope to highlight the effect of two different types of neurons in one brain as well as the pathophysiology of CASK-deficiency disorders at neural circuit levels,” professor Tabuchi adds.

###

The study was supported by a Grant-in-Aid for Young Scientists grant, several Grant-in-Aid for Scientific Research grants, several Grant-in-Aid for challenging Exploratory Research grants, the Foundation of Growth Science, the Japan Epilepsy Research Foundation, the Takeda Science Foundation, the Uehara Memorial Foundation, the Ichiro Kanehara Foundation, and the JST PRESTO Program: Development and Foundation of Neural Networks.

About Shinshu University

Shinshu University is a national university in Japan founded in 1949 and working on providing solutions for building a sustainable society through interdisciplinary research fields: material science (carbon, fiber, composites), biomedical science (for intractable diseases, preventive medicine), and mountain science. We aim to boost research and innovation capability through collaborative projects with distinguished researchers from the world. For more information, please see: https://www.shinshu-u.ac.jp/english/

Media Contact
Nobuko Imanishi
[email protected]
81-263-372-097

Related Journal Article

http://dx.doi.org/10.1038/s41380-018-0338-4

Tags: GeneticsMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Epstein-Barr Virus Protein EBNA1 Drives Oncogene Activation in Cervical Cancer Cells

Epstein-Barr Virus Protein EBNA1 Drives Oncogene Activation in Cervical Cancer Cells

August 22, 2025
APS PRESS Unveils Third Edition of Cotton Industry’s Premier Diagnostic Reference

APS PRESS Unveils Third Edition of Cotton Industry’s Premier Diagnostic Reference

August 22, 2025

Metabolic Modeling Reveals Yeast Diversity for Enhanced Industrial Biotechnology

August 22, 2025

Mechanisms of Amino Acid Transport in Plants Unveiled

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Finds Speed Isn’t Everything in Covalent Inhibitor Drug Development

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

Transformative Nodes Set to Revolutionize Quantum Network Technology

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.