• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tracking down a feat of nature

Bioengineer by Bioengineer
February 6, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Approximately 500 million years ago, the evolution of a mineralised vertebrate skeleton had a knock-on effect, causing many new species to emerge, which in turn conquered new habitats. But how exactly did the skeleton develop? A palaeontologist at FAU is now researching this question in a project funded by the German Research Foundation (DFG).

Vertebrates’ skeletons are unique in that they become mineralised as they develop, allowing them to become hard whilst remaining flexible. ‘The mineralised vertebrate skeleton consists of nanocrystals, which provide stability, like bricks in a wall,’ explains Dr. Emilia Jarochowska from the Chair for Palaeoenviromental Research at FAU. ‘Unlike bricks, however, the nanocrystals can overlap. This flexibility is possible thanks to organic substances between the crystals. It is a unique feature.’

It is not surprising, therefore, that this skeleton tissue became so successful in evolution. When it developed, around 500 million years ago, it led to an explosion in the diversity of species. ‘The skeleton led to teeth, scales and finally bones being developed. Teeth, for example, allowed species to attack new prey,’ Dr. Jarochowska continues. ‘They became more specialised over time, depending on what the respective species ate.’ Vertebrates with skeletons also conquered aquatic ecosystems. ‘Before, actively swimming animals were a rarity. Hard structures are needed for organisms to be able to swim and withstand water resistance,’ says Jarochowska.

How did this feat of nature come about?

How exactly did the mineralised vertebrate skeleton, this feat of nature, develop over millions of years? This is the question that Dr. Jarochowska is researching together with Dr. Michael Bestman from the Professorship of Geology (Structural Geology) and Prof. Dr. Stefan E. Wolf from the Chair of Materials Science (Glass and Ceramics) in a new project funded by the DFG. ‘We are researching how structures at the microscopic level are connected to the function of the skeletal tissue.’ Jarochowska is concentrating on conodonts, a group of vertebrates which were one of the first to develop hyper-mineralised skeletal tissue. She hopes to discover whether conodonts have a nanogranular composite structure similar to that which the majority of biomineralising species of animals have been proven to have. This composite structure contributes to unusual material properties, for example helping to prevent fractures from spreading. At the same time, she is investigating whether the different ultrastructures needed to digest prey, in other words teeth, evolved from arrangements of nanocrystals of various sizes.

FAU encourages promising young researchers

According to Dr. Jarochowska, FAU’s commitment to encouraging young researchers was at least partly behind her success in receiving funding for the project from the DFG: ‘I obtained start-up funding within the framework of the internal FAU Emerging Talents Initiative. This allowed me to carry out the preliminary work required for a successful application.’ The Emerging Talents Initiative (ETI) supports young researchers who are setting out on their career after completing a doctoral degree, providing individual support of up to a maximum of 15,000 euros, which can be used to prepare an application for third-party funding. The funding can be used, for example, to pay for staff, consumables and travel expenses. In addition, the programme offers courses at FAU’s Graduate Centre, a network of other young researchers and guidance from professors who have experience in filing applications. Further information on ETI is available on their website.

###

Media Contact
FAU Press Office
[email protected]
49-913-185-70229
https://www.fau.eu/2019/02/04/news/research/tracking-down-a-feat-of-nature/

Tags: Earth ScienceEvolutionPaleontology
Share12Tweet8Share2ShareShareShare2

Related Posts

HBA Gene Variations Enhance Tibetan Sheep’s High-Altitude Survival

HBA Gene Variations Enhance Tibetan Sheep’s High-Altitude Survival

November 30, 2025
Key SNPs Identified for Groundnut Kernel Quality

Key SNPs Identified for Groundnut Kernel Quality

November 29, 2025

Unlocking Seirinae Evolution with Mitogenomic Insights

November 29, 2025

FGF2 Gene’s Role in Sheep Horn Development Revealed

November 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Continuous Electrocardiographic Index Reveals Sex Differences

Mapping Metabolomics in Oral Cancer Progression

Uncovering Biomarkers Linking Ferroptosis and Ovarian Response

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.