• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, February 4, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The lamprey regenerates its spinal cord not just once — but twice

Bioengineer by Bioengineer
January 30, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Marine Biological Laboratory scientists discover persistent regenerative capacity in lamprey

IMAGE

Credit: S. Allen and J. Morgan


WOODS HOLE, Mass.– Spontaneous recovery from spinal cord injury is almost unheard of in humans and other mammals, but many vertebrates fare better. The eel-like lamprey, for instance, can fully regenerate its spinal cord even after it’s been severed: Within 3 months the lamprey is swimming, burrowing, and flipping around again, as if nothing had happened.

In a new study, Marine Biological Laboratory (MBL) scientists report that lampreys recover and regenerate just as impressively after a second complete spinal cord injury at the same location. The study opens up a new path for identifying pro-regenerative molecules and potential therapeutic targets for human spinal cord injury.

“We’ve determined that central nervous system (CNS) regeneration in lampreys is resilient and robust after multiple injuries. The regeneration is nearly identical to the first time, both anatomically and functionally,” said senior author Jennifer Morgan, Director of the MBL’s Eugene Bell Center for Regenerative Biology and Tissue Engineering.

Morgan’s lab has been focusing on the descending neurons, which originate in the brain and send motor signals down to the spinal cord. Some of these descending neurons regenerate after CNS injury in lamprey, while others die.

“We are beginning to isolate individual descending neurons and look at their transcriptional profiles (gene activity) to see if we can determine what makes some of them better at regenerating than others,” Morgan said.

“The ‘good’ regenerators, for example, may express molecules that are known to promote growth during development. That’s one hypothesis,” she said.

Observing how the descending neurons respond to a second CNS injury can help the team tease out the factors required for repeated, resilient regeneration, which could have implications for designing better strategies for treatments aimed at promoting CNS re-growth after injury or disease.

This study was conducted by first author Kendra L. Hanslik and other former research assistants in Morgan’s lab.

“These are all young scientists, many who have since gone on to graduate school,” Morgan said. “This paper was their labor of love. To go through two rounds of regeneration in the lamprey — that’s nearly 6 months of waiting before they could collect the [spinal cord] tissue and begin the analysis. I’m really proud of their heroic efforts in pulling off this work.”

###

Video: https://vimeo.com/314092587

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery – exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Media Contact
Diana Kenney
[email protected]
508-685-3525

Tags: BiologyDevelopmental/Reproductive BiologyMedicine/HealthneurobiologyTrauma/Injury
Share12Tweet8Share2ShareShareShare2

Related Posts

Sugar Molecules Offer Promising New Approach to Combat Drug-Resistant Bacteria

Sugar Molecules Offer Promising New Approach to Combat Drug-Resistant Bacteria

February 4, 2026
Unlocking History: Genetic Study of Deep Maniot Greeks Unveils a Unique Balkan Time Capsule

Unlocking History: Genetic Study of Deep Maniot Greeks Unveils a Unique Balkan Time Capsule

February 4, 2026

Enhancing ssDNA Templates for CRISPR Gene Editing

February 4, 2026

Adaptive Decision-Making in Naïve Animals: A Novel Unsupervised Model Inspired by Baby Chicks, Turtles, and Insects

February 4, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    158 shares
    Share 63 Tweet 40
  • Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Triterpenoids Block Fungal β-Glucan Synthases

Decoding Neural Population Geometry in Shared Tasks

Missing Key Symptoms Linked to Kawasaki Heart Risks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.