• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NTU and SUTD researchers discover asymmetric chemical reaction with intriguing reaction pathways

Bioengineer by Bioengineer
January 28, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: SUTD/NTU


Catalysis is common in many industries such as pharmaceutical, specialty chemicals, agriculture, polymer and over 90% of chemicals are made from catalytic processes. Catalysts are chemical agents, much like enzymes, which speed up reactions. Some catalysts can even distinguish chirality, i.e. enantiomers (non-superimposable mirror image isomers) and generate chiral or asymmetric products. Such chiral building blocks are especially important in the pharmaceutical industry, as each enantiomer of a molecule could elicit different effects in the body.

Researchers from Nanyang Technological University (NTU) and Singapore University of Technology and Design (SUTD), led by Professor Choon-Hong Tan and Dr Richmond Lee respectively, have reported an asymmetric reaction that uses a cationic (positively charged) catalyst to convert racemic (equal mixture of two enantiomers) substrates to asymmetric product via an intriguing reaction route, i.e. halogenophilic substitution (SN2X). In the conventional SN2 nucleophilic substitution pathway, the incoming nucleophile approaches the molecule from behind the leaving group (X). In an SN2X mechanism, the nucleophile approaches the molecule from the front instead.

This unusual SN2X mechanism was uncovered by combined theoretical and experimental studies, which also led to the discovery of an uncommon chemical interaction, halogen bonding, present between the participating molecules. The halogen bonding interaction was suggested to have instigated the SN2X reaction.

SUTD’s Dr Richmond Lee said: “In essence, this work communicates a new synthetic ‘tool’ for chemists which operates in an unconventional and intriguing manner, paving the way for the design of other asymmetric reactions based on halogen-bonding interactions.”

This multi-institutional Singaporean endeavor has been published in top-tier multidisciplinary journal Science. SUTD researchers, Dr Siu Min Tan and Dr Davin Tan, were also part of the project team.

###

Media Contact
Melissa Koh
[email protected]
65-649-98742

Related Journal Article

http://dx.doi.org/10.1126/science.aau7797

Tags: Atomic/Molecular/Particle PhysicsBiochemistryChemistry/Physics/Materials SciencesIndustrial Engineering/Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Revealing Sichuan Taimen’s Genome and Population Decline

September 27, 2025
Evaluating Salivary Biomarkers in Oral Cancer

Evaluating Salivary Biomarkers in Oral Cancer

September 27, 2025

Enhancing Oral Fat Sensitivity with Pure Milk Emulsions

September 27, 2025

Nicotine During Pregnancy Alters Colon Notch Genes

September 27, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    82 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revealing Sichuan Taimen’s Genome and Population Decline

CSNK1E Influences Hepatocellular Carcinoma Growth and Migration

Predicting Knee Replacement Wear Through Gait Analysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.