• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 1, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists identify toxic antipredator defense mechanism in locusts

Bioengineer by Bioengineer
January 25, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: IOZ


A team of scientists led by Prof. KANG Le at the Institute of Zoology, Chinese Academy of Sciences, reported an unprecedented animal defense mechanism by which an olfactory aposematic (warning) signal can be converted to a hypertoxic chemical to facilitate an antipredator defense in locusts.

The findings were published as “Phenylacetonitrile in locusts facilitates an antipredator defense by acting as an olfactory aposematic signal and cyanide precursor” in Science Advances on Jan. 23, 2019.

Animal aggregation is a very common phenomenon with important biological significance in the natural world. High-density locusts can form large swarms that are placed at high risk of exposure to predators. Therefore, an effective defense strategy by gregarious locusts is very crucial for their survival and migration.

A previous study showed that gregarious locusts may use warning coloration associated with toxic extracts from food plants for antipredator defense against predation. However, the functional coordination and biosynthesis of aposematic signals and toxins in locusts are poorly understood.

Using chemical analysis, researchers revealed that phenylacetonitrile (PAN) is a dominant density-dependent volatile compound that can be detected in all tissues and body fluids of gregarious locusts (Fig. 1A), but is absent in solitary locusts (Fig. 1B). Behavioral assays excluded PAN role in locust aggregations (Fig. 1C).

Using transcriptome analysis, RNA interference-mediated gene knockdown, and chemical analysis of deuterium-labeled compounds, the researchers identified for the first time that a novel cytochrome P450 (CYP) gene CYP305M2 catalyzes the oximation reaction in the biosynthesis pathway from phenylalanine to PAN in animal species.

They showed that this gene encodes a rate limiting enzyme, whose expression levels directly respond to the changes in locust population density.

To test whether PAN production by locusts influences predation by the great tit, the researchers performed a series of dual-choice and predation tests involving locusts with or without PAN load.

They found that great tits refused to attack and feed on PAN-treated solitary locusts (Fig. 2A).

Further, they showed that dsCYP305M2-injected locusts are frequently attacked and are preferentially consumed by great tits over dsGFP-injected (Figure 2B) or PAN-treated dsCYP305M2-injected locusts (Fig. 2C).

These findings suggest that PAN produced by gregarious locusts reduces bird predation and serves as an olfactory aposematic signal in locust defense.

Although biosynthesis and administration of hydrogen cyanide (HCN) is prevalent among plants, it is relatively rare in animals. Here, the researchers revealed for the first time that a de novo biosynthetic pathway of HCN is present in locusts and HCN from the PAN precursor is significantly promoted when locusts are threatened by bird predators (Fig. 3).

Thus, the plasticity of PAN biosynthesis in response to population density is crucial for the optimization of the antipredator defense strategies of locusts under diverse environmental conditions.

The results changed the previous viewpoint on the role of PAN in locust aggregations and provided solid evidence to support its role in locust defense. The outcome of this study is relevant not only to the deep understanding of prey-predator interactions, but also to the development of novel strategies to control outbreaks of agricultural pests.

###

Media Contact
KANG Le
[email protected]

Original Source

http://english.cas.cn/newsroom/research_news/201901/t20190124_204944.shtml

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aav5495

Tags: BiologyGenesZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Foreign Bodies in Sheep and Goats: Prevalence and Risks

Foreign Bodies in Sheep and Goats: Prevalence and Risks

December 31, 2025
Rethinking Gender Inference from Health Record Algorithms

Rethinking Gender Inference from Health Record Algorithms

December 31, 2025

Mapping RNA Editome Development in Ningxiang Pig Fat

December 31, 2025

Revealing Chloroplast Genomes: Insights on Plant Evolution

December 31, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    110 shares
    Share 44 Tweet 28
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Classifies Tumor-Infiltrating Lymphocytes in Breast Cancer

Breakthroughs in 3D Photonic Waveguide Couplers

Transforming Allied Health: Effective Co-Designed Placement Models

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.