• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 10, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Having stressed out ancestors improves immune response to stress

Bioengineer by Bioengineer
January 22, 2019
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Langkilde Lab, Penn State

UNIVERSITY PARK, Pa. — Having ancestors who were frequently exposed to stressors can improve one’s own immune response to stressors, according to Penn State researchers. The results suggest that family history should be considered to predict or understand the health implications of stress.

“Prolonged stress typically suppresses immune function within an individual,” said Tracy Langkilde, professor and head of biology at Penn State. “For example, we often think of ourselves as more likely to get a cold when we’re stressed. We found that lizards whose ancestors lived in low-stress environments experienced suppressed immune function when we exposed them to prolonged stress, just as you might expect. But for lizards whose ancestors lived in high-stress environments, those animals had more robust immune systems when they were exposed to stress. So the immune response to stress actually is dependent upon the environment experienced by previous generations.”

According to Langkilde, the team conducted its work on fence lizards (Sceloporus undulatus), but believes the results may be similar in other animals, perhaps even in humans. Of course, various animals are subjected to different kinds of stressors. In these lizards, she said, stress is often the result of attacks by fire ants (Solenopsis invicta), an invasive species that occurs in the southeastern United States and is spreading northward and westward.

“Fire ants can sting and envenomate lizards, which is stressful and potentially fatal for lizards,” added Gail McCormick, a graduate student in Langkilde’s lab at the time of the research. “These attacks break lizards’ skin, leaving them vulnerable to infection, so it’s probably a bad idea to suppress immune function in response to stress when the predominate stressor, the fire ants, already induce an immune response through wounding. It turns out that lizards whose ancestors are from areas with fire ants have an improved immune response to stress, which may help to ensure their survival.”

To investigate the immune consequences of stress on animals with different heritages, the team captured pregnant females from the wild from two different kinds of environments — one that had been invaded by fire ants 60-to-70 years prior, or the equivalent of 30-to-40 lizard generations, and one that had not yet been invaded by fire ants.

The researchers raised the offspring of the captured females in high- and low-stress environments until they were adults. They created high-stress conditions by either exposing the lizards to fire ants or by dosing them every week with the stress-relevant hormone corticosterone dissolved in oil.

“This concoction soaks into lizards’ skin like lotion, causing a spike in their blood corticosterone levels that mimics their physiological reaction to being chased or attacked by fire ants,” said Langkilde.

Once the lizards reached adulthood — approximately 1 year old — the scientists assessed the animals’ immune function by measuring the ability of their blood plasma to hold a foreign protein in suspension.

“We found that offspring of lizards from high-stress environments had suppressed immune function while offspring of lizards from low-stress environments had enhanced immune function when they were exposed to stress relevant hormones during their own lifetime,” said McCormick. “This change is likely adaptive, as an enhanced immune response in the face of stress should also enhance survival in the presence of frequent attack by fire ants.”

A paper describing these results appears online as an accepted manuscript Jan 18 in the Journal of Experimental Biology.

“This work poses several interesting questions,” said Langkilde. “In a stressful situation, animals often divert energy towards critical functions, like escaping a predator, and away from less immediately critical functions, like immune function, growth or reproduction. This is beneficial in the short term, but can be costly if stress is prolonged. If lizards from sites invaded by fire ants are not suffering from a compromised immune system, what are they trading off? Do they suffer lower growth or suppressed reproduction, instead, when exposed to high-stress environments? These are some of the questions we plan to investigate.”

McCormick noted that understanding how species respond to stress can help in their management.

“In this changing world, animals may experience stressful situations more often, in some cases due to new kinds of stressors such as interactions with humans or invasive species,” she said. “It’s imperative that we understand how species respond to stress, and if this response varies across populations, in order to better allocate resources to mitigate any negative effects.”

###

Other authors on the paper include Travis Robbins, postdoctoral researcher at Penn State at the time of the research and currently an instructor of biology at the University of Nebraska, Omaha, and Sonia Cavigelli, associate professor of biobehavioral health at Penn State. This research was supported by the National Science Foundation.

[ Sara LaJeunesse ]

Media Contact
Gail McCormick
[email protected]
814-863-0901

Original Source

http://science.psu.edu/news-and-events/2019-news/Langkilde1-2019

Related Journal Article

http://dx.doi.org/10.1242/jeb.188359

Tags: BiologyEcology/EnvironmentEndocrinologyEvolutionImmunology/Allergies/AsthmaPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Extended Spectrum Beta-Lactamase in Ouagadougou Uropathogens

Extended Spectrum Beta-Lactamase in Ouagadougou Uropathogens

January 10, 2026
Unlocking Genetic Diversity in Xizang Sophora Moorcroftiana

Unlocking Genetic Diversity in Xizang Sophora Moorcroftiana

January 10, 2026

Diverse DNA Variants Linked to Deafness in Ecuador

January 10, 2026

Boosting European Chestnut Resilience Against Phytophthora Cinnamomi

January 10, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    145 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Wearable NIR OLEDs Enable Non-Invasive Hair Treatment

Hydrocortisone Safe for Preterm Infants’ Heart Health

FDX1-Driven Cuproptosis Worsens Cholestatic Liver Damage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.