• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fruit fly promiscuity alters the evolutionary forces on males

Bioengineer by Bioengineer
January 17, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Results, published in Nature Communications, have shown that the nature of the evolutionary forces which act on male fruit flies depend on how many mates a females has.

Over the last 50 years biologists have realised that females in most animal species mate with multiple males in their lifetimes, in contrast to Darwin’s Victorian ideas of the monogamous female.

However, it has previously been hard to work out how female promiscuity affects sexual selection: when females mate with more than one male, sexual selection can continue after mating because the sperm of rival males compete for eggs. But if females mate indiscriminately, do male adaptations for enticing choosy females become redundant?

The results of this study show that, in fact, indeed both of these changes occur. When female flies were genetically changed to become more promiscuous, sexual selection simply switched from favouring males who gain more mates (good at enticing) to favouring males who are better at post-mating competition (good at fertilizing). In particular, males were favoured who were good at mating multiple times with the same female.

Dr Stuart Wigby from the University of Oxford, whose lab hosted the research, said: ‘This work gives us new insights into the broad evolutionary principles that explain why males vary so much in nature. For example, why in some species males show spectacular displays or fight to the death for access to females, while in other species males invest in making lots of sperm or in pairing with one or a few females.’

Dr Juliano Morimoto Borges from Macquarie University, the lead author, said: ‘Because the gene we used to change female mating behaviour is very common among insects, our findings may also point to an important mechanism underpinning the evolution of insect reproductive patterns. This might either help in the development of improved ways to control insect pests or disease vectors by altering their reproduction, or at least help us understand the evolutionary consequences of attempting to do so.”

The researchers looked at closely-confined small groups, which is a relevant model for many species but is also likely to explain why the males ended up repeatedly mating with the same females rather than seeking new mates. Seeing what happens in larger, more dispersed groups will be an important future step for understanding how promiscuity interacts with ecology to shape sexual selection.

###

For more information, please contact the University of Oxford press office at [email protected]

Full paper title: ‘Sex peptide receptor regulated polyandry modulates the balance of pre- and post-copulatory sexual selection in Drosophila’, Nature Communications.

Once the embargo lifts, the paper will be available to view online at http://www.nature.com/ncomms.

DOI: 10.1038/s41467-018-08113-w

Notes to editors

Oxford University has been placed number 1 in the Times Higher Education World University Rankings for the third year running, and at the heart of this success is our ground-breaking research and innovation.

Oxford is world-famous for research excellence and home to some of the most talented people from across the globe. Our work helps the lives of millions, solving real-world problems through a huge network of partnerships and collaborations. The breadth and interdisciplinary nature of our research sparks imaginative and inventive insights and solutions.

Through its research commercialisation arm, Oxford University Innovation, Oxford is the highest university patent filer in the UK and is ranked first in the UK for university spinouts, having created more than 170 new companies since 1988. Over a third of these companies have been created in the past three years.

Media Contact
Ruth Abrahams
[email protected]
186-528-0730
http://dx.doi.org/10.1038/s41467-018-08113-w

Tags: BiologyGeneticsZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Tracer Lets Surgeons Visualize and Hear Prostate Cancer

Innovative Tracer Lets Surgeons Visualize and Hear Prostate Cancer

August 21, 2025
blank

Ume6 Complexes Shape Candida Biofilm Architecture

August 21, 2025

Think you can outsmart an island fox? Think again!

August 21, 2025

California’s dwarf Channel Island foxes have relatively larger brains than their bigger mainland gray fox cousins, revealing unique island-driven evolution

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Toxoplasma, IL-1 Cause DNA Damage, Cognitive Decline

Iron Deficiency’s Neurodevelopment Impact and Liposomal Iron Potential

Bispecific AFM28 Targets CD123+ Leukemic Stem Cells

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.