• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Defective glial cells can push neurons toward Parkinson's disease

Bioengineer by Bioengineer
January 15, 2019
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New study suggests an important role for glial cells in Parkinson’s disease and offers potential new therapeutic targets.

IMAGE

Credit: IDIBELL


A team of scientists led by Prof. Antonella Consiglio from the IDIBELL and the University of Barcelona (UB), and Prof. Angel Raya from the Center of Regenerative Medicine of Barcelona (CMR[B]/IDIBELL) have discovered that defective versions of human brain cells called astrocytes are linked to the buildup of a toxic protein that is one the hallmarks of Parkinson’s disease. The studied astrocytes, derived from Parkinson’s disease patients with a genetic mutation that affects cell clean-up functions, caused more accumulation of the toxin, α -synuclein, than those derived from healthy individuals. The work, which appears January 10 in the journal Stem Cell Reports, suggests an important role for glial cells in Parkinson’s disease and offers potential new targets for developing therapies.

“Our overall results completely turn our previous view of the participation of astrocytes in Parkinson’s disease upside down. From mainly bystander cells with some early protective role, we believe they should now be considered as critical players that spread the disease and amplify the degree of neuronal degeneration,” says Consiglio, group leader at IDIBELL and prof. at the Faculty of Medicine and Health Sciences of the University of Barcelona, the Institute of Biomedicine of the UB (IBUB).

Star-shaped astrocytes extend branching tendrils around synapses and along blood vessels. It was known by post-mortem analysis of brain tissue from Parkinson’s disease patients that astrocytes showed abnormal accumulation of α-synuclein. However, this was interpreted by most researchers as a secondary response, as if astrocytes were trying to clear up α-synuclein aggregates from neurons.

In view of these previous studies, the researchers decided to develop a new cell culture system from human cells. Using cells derived from Parkinson’s patients with a LRRK2 mutation, in collaboration with Dr. E. Tolosa from the Unit of Movement Disorders at Hospital Clínic, in Barcelona, the researchers generated stem-cell-derived glia cells. “Our results show that astrocytes from Parkinson’s disease patients are altered, in the sense that they accumulate abnormal levels of α-synuclein”, adds Consiglio, who holds an ERC grant.

The researchers then used CRISPR gene editing to track the toxic α-synuclein as it was generated by the stem-cell-derived astrocytes and transferred to dopamine-producing neurons. “We found that the accumulation of α -synuclein caused the targeted neurons’ projecting branches–axons and dendrites–to shorten and disintegrate, resulting in neuronal death even to neurons from healthy individuals”, says Angelique di Domenico, co-first author and former postdoctoral fellow in the Consiglio lab “In contrast, when healthy astrocytes were cultured with neurons from Parkinson’s disease patients, axons and dendrites regenerated and α -synuclein was prevented from accumulating, ultimately restoring neuronal function”, adds di Domenico.

The researchers used a drug–developed to treat abnormal intracellular buildup of toxic materials–on the Parkinson’s disease astrocytes. ” For this work, we tested, in collaboration with Prof. A.M. Cuervo from the Albert Einstein College, NY, the effect of drugs that restore the function of cellular degradation pathways, and found that they prevent the appearance of alterations in patients’ astrocytes, as well as the spread of the disease to dopaminergic neurons,” Prof. Raya says. “While these results pave the way to using astrocytes as a target for novel therapies, there is much to be learned before these treatments can be translated to human beings.”

“iPSCs derived from patients have undoubtedly accelerated advances in developing genuinely human experimental models of diseases; This work would not have been possible without the PD patients with Parkinson’s disease who participated in the study. From a more technological standpoint, we were really surprised by the results of our experiments on α-synuclein transfer, which were unambiguous”, Consiglio concludes. Next steps involve investigating astrocytes from the 85 to 90 percent of Parkinson’s cases that are sporadic, with no known genetic cause.

###

Media Contact
Gemma Fornons
[email protected]
0034-932-607-825

Original Source

http://www.idibell.cat/en/whats-on/noticies/defective-glial-cells-can-push-neurons-toward-parkinsons-disease

Related Journal Article

http://dx.doi.org/10.1016/j.stemcr.2018.12.011

Tags: Medicine/HealthMolecular BiologyneurobiologyParkinson
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Both Parents’ Genes Shape Wolbachia Effects in Beetles

July 30, 2025
Unraveling Genomic Evolution in Marine Intertidal Limpets

Unraveling Genomic Evolution in Marine Intertidal Limpets

July 30, 2025

Processing Environments Shape Food-Related Antibiotic Resistome

July 30, 2025

Multi-Proteomic Analysis Reveals Host Risks in VZV

July 30, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rising Overtopping Risks for U.S. Dams Revealed

Maternal Emulsifiers Impact Offspring Gut, Disease Risk

Home Phototherapy Effective for Neonatal Jaundice: Review

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.