• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New technique offers rapid assessment of radiation exposure

Bioengineer by Bioengineer
January 9, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from North Carolina State University have developed a new technique that allows them to assess radiation exposure in about an hour using an insulator material found in most modern electronics. The technique can be used to triage medical cases in the event of a radiological disaster.

“If there is a large radiological event in a populated area, it would be difficult or impossible to treat everyone who could potentially have acute radiation syndrome,” says Robert Hayes, an associate professor of nuclear engineering at NC State and first author of a paper on the work. “You’d need to be able to figure out who was exposed to enough radiation to require treatment.”

The approach relies on testing crystalline insulators found in everything from thumb drives to smartphones. Because the technique is high-throughput, accurate and precise, it can adequately assess an individual’s exposure in about an hour, Hayes says. Prior methods can take weeks.

“Given that health providers have a one- to two-week window to start treating victims of acute radiation syndrome, the technique should be sufficient to identify which patients require the necessary care,” Hayes says. “It could not only identify individual cases of acute radiation syndrome, but also help authorities determine which geographic areas received the most radiation.

“But it’s not just about identifying those that require care,” Hayes says. “For example, our technique might have been useful in a place like Fukushima, for putting people’s minds at ease. It’s like having your own personal radiation detector.”

The technique requires the insulator to be removed from its electronic device and cleaned. The sample is then placed in a thermally stimulated luminescence reader, which collects spectra relating to the number of electrons found in the flaws inherent to the sample’s crystalline structure. That spectral data is then fed into a custom algorithm that calculates the sample’s radiation exposure.

“This technique requires specialized equipment and expertise, so it’s not something most locales would have on hand,” Hayes says. “But labs like mine could run the tests and provide the authorities with good data very quickly. In addition to NC State, I know there’s another lab with relevant expertise and infrastructure at Oklahoma State University, and one in Denmark, though there are likely others.

“Hopefully, this technique won’t be necessary for a long time, if ever. But we think it’s important to develop these tools before they are needed.”

###

The paper, “Retrospective dosimetry at the natural background level with commercial surface mount resistors,” is published in the journal Radiation Measurements. The paper was co-authored by Ryan O’Mara, a Ph.D. student at NC State. The work was done with support from the Nuclear Regulatory Commission under grant number NRC-HQ-84-14-G-0059. The work was also done with support from NC State’s Consortium for Nonproliferation Enabling Capabilities, which is sponsored by the Office of Defense Nuclear Nonproliferation R&D of the National Nuclear Security Administration.

Media Contact
Matt Shipman
[email protected]
919-515-6386

Related Journal Article

https://news.ncsu.edu/2019/01/assessing-radiation-exposure/
http://dx.doi.org/10.1016/j.radmeas.2018.12.007

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMedicine/HealthNuclear PhysicsResearch/DevelopmentTechnology/Engineering/Computer ScienceWeaponry
Share12Tweet8Share2ShareShareShare2

Related Posts

Deadly Self-Harm from Pepper Spray Gun Incident

November 19, 2025

Exploring Epilepsy’s Link to Autism in Inpatients

November 19, 2025

Effective Bridge Using LVAD in Aortic Valve Patient

November 19, 2025

Semaglutide: Weekly Dose Boosts Diabetes Care in Japan

November 19, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Streptomyces Extract Battles Multidrug-Resistant Bacteria and Fungi

Deadly Self-Harm from Pepper Spray Gun Incident

Transforming Chicken Feathers: Optimizing Keratinase for Fertilizers

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.