• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

$7 million to advance cardiovascular research

Bioengineer by Bioengineer
September 6, 2025
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Despite advances in prevention and therapy, cardiovascular diseases are still one of the leading causes of death worldwide. Scientists have only recently begun to understand the key role of alternative splicing – the “stitching together” of messenger RNA during gene transcription – in cardiovascular diseases. The Leducq Foundation is providing 7 million U.S. dollars over the next five years to support the Cardiac Splicing as a Therapeutic Target (CASTT) project, which is comprised of six European and U.S. researchers. They will focus on examining the regulation and disease relevance of alternative splicing in different types of heart cells.

“Our goals include mapping the path from splicing factor discovery to drug development, and creating a database that will make it easier in the future to incorporate complex splicing information into heart disease diagnostics,” says Professor Michael Gotthardt, group leader at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and the European coordinator of CASTT. Professor Leslie Leinwand, biologist and founder of several successful BioPharma companies who is the North American Coordinator adds: “The Leducq Foundation allows us, as scientists and clinicians, to think outside the box of what is traditionally considered effective treatments for heart disease. It enables us to connect different research directions from animal models to patients with innovative genomic and computational approaches.”

Other network members include Professor Euan Ashley, a cardiologist at Stanford University; Professor Maria Carmo-Fonseca, a cell and oncobiologist at the University of Lisbon; Professor Benjamin Meder, a cardiologist at Heidelberg University Hospital; and Professor Lars Steinmetz, a geneticist at the EMBL Heidelberg and Stanford University.

Splicing errors can cause heart disease

Heart muscle cells require a variety of proteins so that they can develop, contract, transmit electrical impulses to neighboring cells, and respond to external influences such as stress. The blueprints for producing these proteins are contained in the genes and are transcribed into messenger RNA (mRNA), which then carries this information to the cell’s protein factories – the ribosomes.

Some cells, especially those of higher organisms, use a trick to produce a wide variety of protein molecules. The genes of these cells do not only encode one particular protein, but can serve as the blueprint for several proteins. Genes usually contain alternating coding segments called exons, and non-coding regions called introns. The latter can be removed as needed during transcription, while exons can be linked together in a variable fashion. This creates mRNAs with different exon compositions. This process, known as “alternative splicing,” is executed by the spliceosome – a complex machinery made up of splicing factors and splicing regulators. Errors in the splicing process can lead to heart disease. “While remodeling processes dominate in the embryonic heart, allowing the heart to grow and mature, the most important processes at work in the adult heart are those that ensure effective pumping,” explains Gotthardt. “In diseased hearts, however, we see gene expression patterns that partly transition back toward the embryonic state in terms of protein formation. As a result, the heart no longer operates within the normal range.”

A heart for large meals

The researchers work both clinically as well as experimentally with human cell lines, artificial heart tissue, and animal models. In addition to mice, this includes Burmese pythons, because this powerful strangler is one of only a few living creatures capable of rapidly growing the size of its heart – within a day of swallowing its large prey. This increases blood flow and speeds up the distribution of nutrients throughout the reptile’s body. The organ then shrinks back to its original size when digestion is completed. “We want to elucidate the very specific regulation of splicing processes in the python heart because we think these findings could be of therapeutic use – for example, in patients suffering from hypertrophic cardiomyopathy, which involves a thickening of the heart muscles,” says Leinwand, chief scientific officer for the BioFrontiers Institute at University of Colorado Boulder.

###

Scientific contacts

Professor Michael Gotthardt

Neuromuscular and Cardiovascular Cell Biology Lab

Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)

+49-(0)30-9406-2245

[email protected]

Professor Leslie Leinwand

BioFrontiers Institute

University of Colorado Boulder

[email protected]

Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)

The Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) is one of the world’s leading biomedical research institutions. Max Delbrück, a Berlin native, was a Nobel laureate and one of the founders of molecular biology. At the MDC’s locations in Berlin-Buch and Mitte, researchers from some 60 countries analyze the human system – investigating the biological foundations of life from its most elementary building blocks to systems-wide mechanisms. By understanding what regulates or disrupts the dynamic equilibrium in a cell, an organ, or the entire body, we can prevent diseases, diagnose them earlier, and stop their progression with tailored therapies. Patients should benefit as soon as possible from basic research discoveries. The MDC therefore supports spin-off creation and participates in collaborative networks. It works in close partnership with Charité – Universitätsmedizin Berlin in the jointly run Experimental and Clinical Research Center (ECRC ), the Berlin Institute of Health (BIH) at Charité, and the German Center for Cardiovascular Research (DZHK). Founded in 1992, the MDC today employs 1,600 people and is funded 90 percent by the German federal government and 10 percent by the State of Berlin.

The University of Colorado Boulder

The University of Colorado Boulder is a bold, innovative community of scholars and learners who accelerate human potential to solve the humanitarian, social and technological challenges of our time. Its BioFrontiers Institute brings together researchers from the life sciences, physical sciences, computer science and engineering to uncover new knowledge at the frontiers of science and partner with industry to transform discoveries into tools for improving human health.

Media Contact
Jana Ehrhardt-Joswig
[email protected]

Original Source

https://www.mdc-berlin.de/news/press/7-million-advance-cardiovascular-research

Tags: BiologyCell BiologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Language Switching in Multilingual Autistic Adults

October 19, 2025

Effective Nursing Strategies for Cardiovascular Disease Prevention

October 19, 2025

Serum Proteomics: Uncovering COVID-19 Organ Morbidity Biomarkers

October 19, 2025

Diabetes Management Linked to Social Vulnerability Factors

October 19, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1261 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    289 shares
    Share 116 Tweet 72
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    123 shares
    Share 49 Tweet 31
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Restoring Kraak Porcelain Patterns with Generative AI

Sex Differences in Anxiety and Depression Modulation

Exploring Language Switching in Multilingual Autistic Adults

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.