• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

3D models of breast cancer tumors introduce stromal cells as new drug therapy targets

Bioengineer by Bioengineer
September 27, 2018
in Health
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Hossein Tavana, Ph.D., an associate professor of biomedical engineering at The University of Akron (UA), has received a single-PI grant in the amount of $328,426 from the National Science Foundation (NSF) – his third federal grant this year – to study the role of stromal cells in cancer.

In addition to a mass of cancer cells, tumors contain several other types of cells known collectively as stromal cells. These cells make up connective tissue that normally supports all tissues and organs both structurally and functionally. Research in recent years has shown that stromal cells play a major role in cancer growth and progression.

"Tumors are considered a complex tissue," said Tavana. "Treatments have only focused on the cancerous cells and largely neglected the stromal cells that contribute to tumor growth and persistence despite treatments."

The research in this three-year NSF grant will utilize his lab's patented technology to make 3D culture models that mimic the morphology of tumors and reproduce the interactions between stromal and cancer cells.

"Our studies using this model will allow us to mechanically understand how stromal cells render cancer cells proliferative and drug resistant," said Tavana. "This will ultimately allow for more accurate drug testing and introduce stromal cells as new therapeutic targets. A major effort of this project will be testing rationally-selected combinations of drugs that block interactions of stromal and cancer cells, prevent growth of cancer cells and maintain their sensitivity to drugs."

As a disease model, this project will use triple negative breast cancer (TNBC) cells and cancer-associated fibroblasts as stromal cells. Unlike several other types of breast cancers, there is currently no effective treatments for TNBC and therefore, this project may offer new treatments for this type of breast cancer. The technological approach will be broadly applicable to different types of cancers.

As well as training UA graduate and undergraduate students for the growing biomanufacturing industry, this grant will provide opportunities to Akron Public School students to experience hands-on biomedical research and engineering education. Tavana coordinated the outreach with Project GRAD Akron, a non-profit organization that works to ensure a quality public school education for all at-risk children in economically disadvantaged communities.

"I was able to arrange for a group of three female African-American high school students and their teacher to come to UA for two weeks each year throughout the three-year period of the grant to participate in funded summer camps, engage in hands-on research, and enhance their communication skills through designed activities," explained Tavana. "They will be shown how to present their summer research in their school, which will serve to advocate engineering among their peers."

All NSF proposals have a Broader Impacts component to demonstrate how the proposed research will benefit the community, in addition to contributions of its research discoveries.

###

Media Contact

Lisa Craig
[email protected]
330-972-7429
@UAkronNews

http://www.uakron.edu/

https://www.uakron.edu/im/news/ua-professor-awarded-federal-grant-to-study-breast-cancer

Share14Tweet8Share2ShareShareShare2

Related Posts

Collaborative Hypertension Care for Medicare Patients

September 20, 2025

Mentoring Tomorrow’s Neonatologists: Director Tips

September 20, 2025

Detecting Gunshot Residues: Ammo, Surface, Blood Effects

September 20, 2025

Vitamin D Deficiency: A Hidden Cause of Childhood Fatigue

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Next-Gen Oncology: Precision Genomics Meets Immuno-Engineering

Prostate-Specific Antigen Testing: Past, Present, Future

Bisabolol: Natural Anticancer Agent with Therapeutic Promise

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.