• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 10, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

3D imaging creates molecular maps of hidden microbial communities on coral reefs

Bioengineer by Bioengineer
April 8, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr. Ben Mueller

Researchers from the University of Hawai’i (UH) at Mānoa, University of British Columbia (UBC), San Diego State University (SDSU), and elsewhere have created 3D molecular maps of bacteria, viruses, and biochemicals across coral colonies along with their interacting organisms such as algae and other competing corals. This allowed the team to discover specific microbial and viral functions that appear to be key components of the coral microbiome.

The study, published recently in Frontiers of Marine Science, used a novel combination of state-of-the-art molecular methods with cutting-edge 3D imaging techniques to create high-resolution molecular maps on coral reef organisms.

Healthy coral reefs require coral colonies that are resilient and outcompete other organisms such as algae. The new study builds on the authors’ previous research which highlighted the important role that viruses and bacteria play in mediating the clash between coral and algae on a coral reef.

“Our recent research extends this work into a spatially explicit framework and makes for some really impressive 3D molecular maps,” said Ty Roach, study senior author and post-doctoral researcher at the Hawai’i Institute of Marine Biology (HIMB) in the UH Mānoa School of Ocean and Earth Science and Technology. “Further, we found that patterns in bacteria and viruses that live on and in corals were mainly driven by ecological factors such as how close to a competitor the sample was taken.”

The team sampled two coral colonies from a Caribbean coral reef and made 3D reconstructions of the corals and their interacting organisms using a method called structure from motion photogrammetry. Multiple molecular methods were then used to investigate the bacterial and viral DNA, RNA, and biochemicals that were associated with these corals. These molecules were then mapped back onto the 3D models.

“The current state of ecology has demonstrated that corals are home to millions of microbes and viruses, which exist in a complex biochemical milieu,” said Emma George, co-lead author of the study and doctoral candidate at UBC. “These viruses, microbes and chemicals in combination with the coral host form a unit called a holobiont. Understanding the roles of each of these players in ecosystem function has become increasingly important as coral reef health has begun to decline over recent decades.”

Functional and healthy reef ecosystems protect coastlines, contribute to local economies and support marine food webs, including fisheries. The new findings have direct implications for coral reef restoration and management, as they provide a more mechanistic understanding of the way that local stressors affect corals and can lead to disease.

“Additionally, these 3D molecular mapping methods could be applied to many other ecologically important organisms, beyond corals,” said Mark Little, co-lead author of the study and doctoral candidate at SDSU. “It is our hope that this combination of methods to generate underwater molecular maps will be a fruitful way for others to better understand the holobiont of many marine animals and plants.”

###

Media Contact
Marcie Grabowski
[email protected]

Original Source

https://www.soest.hawaii.edu/soestwp/announce/news/cutting-edge-3d-imaging-creates-molecular-maps-of-hidden-microbial-communities-on-coral-reefs/

Related Journal Article

http://dx.doi.org/10.3389/fmars.2021.627724

Tags: BacteriologyBiodiversityBioinformaticsBiologyEcology/EnvironmentGeneticsMarine/Freshwater BiologyMicrobiologyMolecular BiologyOceanography
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Adaptive Noise AEKF Enhances Lithium-Ion Battery Evaluation

January 10, 2026
Extended Spectrum Beta-Lactamase in Ouagadougou Uropathogens

Extended Spectrum Beta-Lactamase in Ouagadougou Uropathogens

January 10, 2026

Breath-by-Breath Lung Gas Detection in Neonatal Mannequin

January 10, 2026

China’s Multi-Center Study on Preterm Small-for-Gestational-Age Neonates

January 10, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    145 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Adaptive Noise AEKF Enhances Lithium-Ion Battery Evaluation

Extended Spectrum Beta-Lactamase in Ouagadougou Uropathogens

Breath-by-Breath Lung Gas Detection in Neonatal Mannequin

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.