• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

3D artificial pneumatic muscles for future “makers”

Bioengineer by Bioengineer
August 30, 2022
in Chemistry
Reading Time: 3 mins read
0
GRACE actuators
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Genoa/Pisa (Italy), 30 August 2022 – Artificial pneumatic muscles consisting of 3D-printed structures that can extend and contract as required: this is the innovative design of the GRACE actuators devised by researchers from the Istituto Italiano di Tecnologia (IIT, Italian Institute of Technology) in Genoa and the Scuola Superiore Sant’Anna (SSSA, Sant’Anna School of Advanced Studies) in Pisa. The work has been described in Science Robotics and the researchers showcased the actuators’ versatility in an initial demonstration, a pneumatic hand comprising 18 different GRACEs, manufactured in a single printing process.

GRACE actuators

Credit: IIT-Istituto Italiano di Tecnologia

Genoa/Pisa (Italy), 30 August 2022 – Artificial pneumatic muscles consisting of 3D-printed structures that can extend and contract as required: this is the innovative design of the GRACE actuators devised by researchers from the Istituto Italiano di Tecnologia (IIT, Italian Institute of Technology) in Genoa and the Scuola Superiore Sant’Anna (SSSA, Sant’Anna School of Advanced Studies) in Pisa. The work has been described in Science Robotics and the researchers showcased the actuators’ versatility in an initial demonstration, a pneumatic hand comprising 18 different GRACEs, manufactured in a single printing process.

The creation of artificial muscles is a very ambitious goal in the field of robotics, because in nature, muscle tissue has complex characteristics that permit highly versatile movements, from rapid, powerful contractions to small and precise changes in body shape, such as those of human facial expressions. Although individual muscle fibres can only contract, it is their specific arrangement in complex muscle architectures that enables articulate deformations such as bending, twisting and antagonistic movements.

The research team worked on this problem by starting from the individual pneumatic actuators. Each actuator can expand, extend and contract simply by means of its geometric shape, resembling a spindle with pleats, comprising a single unit that can be 3D printed and manufactured using different materials and in different sizes. Various GRACEs – an acronym for GeometRy-based Actuators able to Contract and Elongate – can be printed ready assembled in complex architectures, in order to provide the types of movement required.

“Their size is limited purely by the manufacturing technology used,” commented Corrado De Pascali, first author of the study and a PhD student at IIT’s Bioinspired Soft Robotics laboratory in Genoa and at SSSA’s BioRobotics Institute in Pisa. “They can be built in different sizes, and we can vary their performance, both in terms of deformation and strength, and manufacture them using various materials and technology, even already built into the structures to be fabricated”.

The researchers demonstrated the GRACEs’ characteristics by printing a pneumatic hand, using a commercial 3D printer, in a single printing process. The material used was a soft resin and it comprises 18 GRACEs of different sizes and shapes, so that with a pressure of a few tenths of a bar it is possible to bend the fingers, twist the palm and rotate the wrist. The hand weighs about 100 grams and is comparable in size to a human hand.

The actuators are designed so that they can support over 1,000 times their weight depending on the material used to make them. In fact, the forces generated and the pressures required can be increased or reduced by using materials with higher or lower rigidity, as well as by modifying the thickness of the membrane making up these actuators while maintaining the same contraction and extension performance.

GRACE actuators have characteristics ideal for application in various robotic solutions, using simple techniques at very low costs. Their ease of manufacture also makes them replicable outside research laboratories, such as in the fab labs available to makers.

These results were obtained as part of the studies on animal musculature envisaged by the European FET (Future and Emerging Technologies) project Proboscis coordinated by Lucia Beccai, and as part of the research on robotics inspired by living organisms performed by IIT’s Bioinspired Soft Robotics coordinated by Barbara Mazzolai in Genoa, and in collaboration with SSSA’s BioRobotics Institute in Pisa.



Journal

Science Robotics

DOI

10.1126/scirobotics.abn4155

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

3D-printed biomimetic artificial muscles using soft actuators that contract and elongate

Article Publication Date

27-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Isolable Germa-Isonitrile with N≡Ge Triple Bond

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Fluorescent RNA Switches Detect Point Mutations Rapidly

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025

Designing DNA for Controlled Charge Transport

November 18, 2025

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    98 shares
    Share 39 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Proteomic Mass Spectrometry Identifies Menstrual Blood Markers

Metformin Shields Retinal Cells, Stabilizes Vision in Glaucoma

M⁶A Methylation: Insights into Autoimmune Disease Therapies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.