• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 1, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

2019 ‘dead zone’ may be the second largest on record

Bioengineer by Bioengineer
June 10, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A recent forecast of the size of the “Dead Zone” in the northern Gulf of Mexico for late July 2019 is that it will cover 8,717-square-miles of the bottom of the continental shelf off Louisiana and Texas. The unusually high Mississippi River discharge in May controls the size of this zone, which will likely be the second largest zone since systematic measurements began in 1985. The water mass with oxygen concentrations less than 2 parts per million forms in bottom waters each year primarily as a result of nitrogen and phosphorus loading from the Mississippi River watershed, which fertilizes the Gulf of Mexico’s surface waters to create excessive amounts of algal biomass. The decomposition of this plant material in the bottom layer leads to oxygen loss.

The low oxygen conditions in the gulf’s most productive waters stresses organisms and may even cause their death, threatening living resources, including fish, shrimp and crabs caught there. Low oxygen conditions started to appear 50 years ago when agricultural practices intensified in the Midwest. No reductions in the nitrate loading from the Mississippi River to the Gulf of Mexico have occurred in the last few decades.

The predicted hypoxic area is about the size of the land area of New Hampshire and about 4.5 times the size of the Hypoxia Action Plan goal. This estimate assumes that there are no significant tropical storms in the two weeks before the monitoring cruise or during the cruise. The estimate is made each year by LSU scientists Eugene Turner and Nancy Rabalais. The report is posted at https://gulfhypoxia.net/research/shelfwide-cruise/?y=2019&p=hypoxia_fc.

###

Media Contact
Alison Satake
[email protected]

Tags: BiochemistryBiologyEcology/EnvironmentEnvironmental HealthFertilizers/Pest ManagementFisheries/AquacultureMarine/Freshwater BiologyPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

AI Classifies Tumor-Infiltrating Lymphocytes in Breast Cancer

January 1, 2026

Transforming Allied Health: Effective Co-Designed Placement Models

January 1, 2026

Enhanced Nerve Conduits Boost Sciatic Regeneration

January 1, 2026

Assessing HPV Self-Collection Readiness in Tamil Nadu

January 1, 2026
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    111 shares
    Share 44 Tweet 28
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

FACEing Advances: Single-Pixel Complex-Field Microscopy Beyond Visible

AI Classifies Tumor-Infiltrating Lymphocytes in Breast Cancer

Breakthroughs in 3D Photonic Waveguide Couplers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.