• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

1 million Euros for black holes made from semimetals

Bioengineer by Bioengineer
January 22, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © pixelwg/Jörg Bandmann

One of the central goals is to control the flow of electrons in these materials so precisely that new types of quantum sensors can be developed. The project is an international collaboration of researcher from TU Dresden and the University of Luxembourg, and has just received funding of roughly one million Euros.

In order to conduct electric currents along precisely defined paths, researchers often focus on the analysis of electronic transport properties. For the first time, specific theoretical foundations of different areas of physics will now be unified within the Cluster of Excellence ct.qmat with the goal of unleashing the full potential of semimetals. This class of materials is still relatively new, and has not yet been employed in the design of electronic devices. The combination of relativity and quantum mechanics is a new approach towards a systematic manipulation of electrons in semimetals. More precisely, the researchers will translate the curvature of spacetime in black holes to the flow of electons in semimetals. The combination of these two thus far vastly unconnected theories opens up entirely new oppurtunities in worldwide material research.

„Together with two colleagues from Luxembourg, we will develop electronic components for future devices capable of entirely new functionalities. As one example, we want to construct electronic lenses that will allow to very precisely control the flow of electric currents. Thus far, semimetals are not used a lot in the electronics industry because they conduct relatively poorly. But we believe that they are much more powerful than silicon when it comes to manipulating electrons on a microscopic level. This is why research in this field is important and trendsetting”, explains Dr. Meng.

The new research project is entitled „Topology in Relativistic Semimetals” (TOPREL) and will be funded with 925.000 Euro by the Deutschen Forschungsgemeinschaft (DFG) and its Luxembourgish partner organization Fonds National de la Recherche (FNR). Besides Dr. Tobias Meng, who is currently heading an Emmy Noether research group at the TU Dresden, the project is co-directed by two researchers from the University of Luxembourg. Within the next three years, they will build up an infrastructure driving interational top-level research on relativistc semimetals. Two postdoc and one PhD position will be advertised shortly.

###

Cluster of Excellence ct.qmat

The Cluster of Excellence ct.qmat – Complexity and Topology in Quantum Matter is a joint research collaboration by the Julius-Maximilians- Universität Würzburg and the TU Dresden since 2019. More than 250 scientists from 33 countries and four continents perform research on topological quantum materials that reveal surprising phenomena under extreme conditions such as ultra-low temperature, high pressure, or strong magnetic field. Making these special properties usable under everyday conditions will be the basis for revolutionary quantum chips and new types of technical applications. The Cluster of Excellence is funded within Excellence Strategy of the federal and state governments.

Media Contact
Dr. Tobias Meng
[email protected]

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Rice membrane extracts lithium from brine faster and with reduced waste

Rice membrane extracts lithium from brine faster and with reduced waste

October 2, 2025
blank

Pseudokinases Drive Peptide Cyclization via Thioether Crosslinking

October 2, 2025

MIT Researchers Develop Simple Formula to Enhance Fast-Charging, Durable Batteries

October 2, 2025

Registration and Scientific Program Now Open for Upcoming Plasma Physics Conference

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing Cell Viability: Flow Cytometry vs. Microscopy

Study: COVID-19 Boosters Effective in Immunosuppressed Kids

Mediatizing Egypt’s New Administrative Capital Development

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.