• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Zika virus infects developing brain by first infecting cells meant to defend against it

Bioengineer.org by Bioengineer.org
January 20, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
4
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UC San Diego Health

Researchers at the University of California San Diego School of Medicine, with colleagues in Brazil, report that the Zika virus is transmitted from mother to fetus by infected cells that, ironically, will later develop into the brain's first and primary form of defense against invasive pathogens.

The findings are published in the current online issue of Human Molecular Genetics.

"It's a Trojan Horse strategy," said Alysson Muotri, PhD, professor in the UC San Diego School of Medicine departments of Pediatrics and Cellular and Molecular Medicine. "During embryogenesis — the early stages of prenatal development — cells called microglia form in the yolk sac and then disperse throughout the central nervous system (CNS) of the developing child.

"In the brain, these microglia will become resident macrophages whose job is to constantly clear away plaques, damaged cells and infectious agents. Our findings show that the Zika virus can infect these early microglia, sneaking into the brain where they transmit the virus to other brain cells, resulting in the devastating neurological damage we see in some newborns."

Beginning in 2015, a dramatic increase in children born with microcephaly or abnormally small heads and other birth defects was observed in Brazil. The phenomenon was subsequently linked to infection by the Zika virus, which Muotri and others confirmed last year caused birth defects in experimental models.

Typically, the Zika virus is transmitted to people through the bite of infected Aedes species mosquitoes. However, a pregnant woman can also pass the virus to her fetus, though scientists have not been able to precisely describe the mode of transmission.

"Considering the timing of transmission, we hypothesized that microglia might be serving as a Trojan horse to transport the virus during invasion of the CNS," Muotri said.

To test their hypothesis, the researchers used human induced pluripotent stem cells to create two relevant CNS cell types: microglia and neural progenitor cells (NPCs), which generate the millions of neurons and glial cells required during embryonic development. Then they established a co-culture system that mimicked the interactions of the two cell types in vitro when exposed to the Zika virus.

They found that the microglia cells engulfed Zika-infected NPCs, doing their job. But when these microglia carrying the virus were placed in contact with non-infected NPCs, they transmitted the virus to the latter. "That suggests microglia may indeed be the culprit for transmitting the virus to the CNS during prenatal neurodevelopment," Muotri said.

Muotri and colleagues then tested whether an FDA-approved drug called Sofosbuvir, marketed as Sovaldi and used to treat hepatitis C, might limit viral infection of NPCs in co-culture with infected microglia. It did. "Sofosbuvir significantly decreased cell death of NPCs and the viral load in NPCs"

Though the findings are based on in vitro research and further investigation is necessary, Muotri said they were encouraging, suggesting microglial cells could be a therapeutic target for reducing Zika transmission into the CNS of developing fetuses.

"The co-culture system we've developed is robust and useful for studying neuro-immune interactions," he said. "It can also serve as a drug-screening platform for discovering new therapeutic compounds against Zika virus infections in a human context."

###

Co-authors of the study include: Pinar Mesci, Angela Macia, Christopher N. LaRock, Leon Tejwani, Isabella R. Fernandes, Nicole A. Suarez, and Victor Nizet, UC San Diego; Paolo M. de A. Zanotto, University of Sao Paolo; and Patricia C.B. Beltrao-Braga, University of Sao Paolo and School of Arts, Sciences and Humanities, Sao Paolo.

Disclosure: Muotri is a co-founder and has equity interest in TISMOO, a company dedicated to genetic analysis focusing on therapeutic applications customized for the autism spectrum disorder and other neurological disorders of genetic origin. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict of interest policies.

Media Contact

Scott LaFee
[email protected]
858-249-0456
@UCSanDiego

http://www.ucsd.edu

Related Journal Article

http://dx.doi.org/10.1093/hmg/ddx382

Share12Tweet7Share2ShareShareShare1

Related Posts

Unlocking Henna’s Healing Power: A Breakthrough Chemical from Lawsonia inermis Fights Fibrosis

October 27, 2025

ACHO: Enhancing Treatment Adherence through Digital Care

October 27, 2025

Decline in Opioid Prescriptions for Pain Management Observed in Canada

October 27, 2025

Canada Struggles to Address Growing Youth Opioid Use Crisis

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1285 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Henna’s Healing Power: A Breakthrough Chemical from Lawsonia inermis Fights Fibrosis

ACHO: Enhancing Treatment Adherence through Digital Care

Decline in Opioid Prescriptions for Pain Management Observed in Canada

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.