• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Zebradanio helped study the mechanics of brain injuries and their treatment

Bioengineer by Bioengineer
September 15, 2022
in Health
Reading Time: 4 mins read
0
Zebradanio at lab
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A group of scientists, which included researchers from the Ural Federal University (UrFU), have developed and successfully tested a new model of traumatic brain injury (TBI) in zebrafish. The use of this model made it possible to simulate TBI and identify molecular targets that are promising for the treatment of neurotraumas and their consequences. This paves the way for preclinical testing of new neuroprotective drugs on zebrafish. An article describing the studies was published in the Pharmaceutics.

Zebradanio at lab

Credit: Tatyana Andreeva

A group of scientists, which included researchers from the Ural Federal University (UrFU), have developed and successfully tested a new model of traumatic brain injury (TBI) in zebrafish. The use of this model made it possible to simulate TBI and identify molecular targets that are promising for the treatment of neurotraumas and their consequences. This paves the way for preclinical testing of new neuroprotective drugs on zebrafish. An article describing the studies was published in the Pharmaceutics.

The most common experimental models of traumatic brain injury in both rodents and zebrafish, such as a mechanical blow to the head or piercing the brain with a needle, are associated with penetrating damage to brain tissue. In the new model, it was possible to study the fish relatively safely for them. Due to the fact that the skin and skull of the used variety of zebrafish are transparent, scientists “enlightened” the brain directly, and non-invasively. Their method is based on irradiating the brain of fish with a unique laser system with a precise guidance system. It was specially designed for this purpose.

“Moreover, in this work, the localization, power, and duration of laser irradiation were carefully adjusted and optimized. Our method made it possible to target the brain of fish, despite their small size. Therefore, all unwanted damage was excluded. The surface tissues of the organism were not subjected to destructive effects, and no one fish died as a result of irradiation,” says Allan Kalueff, the head of the study.

10 minutes after laser irradiation, the fish regained consciousness. In the first two days, the irradiated zebradanios moved much less actively: less often, more slowly, covering shorter distances, often and for a long time freezing in place. This was indicative of serious disturbances in the normal behavior of fish with TBI. The fact that their reactions accurately reproduced the behavior of mammals and humans with TBI indicated the reliability of the developed model.

At the same time, after analyzing several molecular biomarkers of neuroinflammation, damage, and recovery of neurons, scientists were convinced that, unlike mammals, zebrafish are capable of full restoration of brain functions as early as a week after neuroinjury. Therefore, fish are of particular interest for identifying and studying the mechanisms of neuroregeneration and for preclinical testing of appropriate drugs.

“We have evaluated several potential molecular targets to identify the mechanisms of therapy for traumatic brain injury and their consequences. The results obtained showed that, firstly, during the entire period of observation, microglia were activated in the brain of zebrafish. These are cells of the central nervous system that both eliminate cellular debris and other harmful factors and start regenerative processes. Apparently, the activation of microglia plays an important role in the body’s response to primary traumatic brain injury in its acute phase. At the same time, prolonged and excessive activation of microglia can cause further brain damage. Thus, the regulation of microglial activity may represent a promising approach in the treatment of TBI,” says Allan Kalueff.

 Secondly, one of the biomarkers, the brain-derived neurotrophic factor (BDNF), which supports the reproduction, survival and development of neurons, attracted attention of scientists. Significantly decreasing immediately after irradiation, BDNF expression jumped up to the level of fish from the control group also on the seventh day.

“We believe that BDNF contributes to the survival and full functional recovery of damaged brain tissue in this new TBI model. Thus, this protein, as well as its analogs, may have a special therapeutic potential in TBI,” says Allan Kalueff.

The conducted studies and the results obtained are of great practical importance in the treatment of people. Neurotrauma affects about 60 million people worldwide every year, often resulting in hospitalization, permanent disability, and death. The most common causes of such injuries are shocks, blows, falls, penetrating head injuries, for example, due to sports, traffic accidents or attacks. It is also important that TBI can predispose to such serious neurodegenerative disorders as Alzheimer’s and Parkinson’s diseases. At the same time, the household TBIs are the most common type of neurotrauma and require both in-depth study at the molecular, cellular, and behavioral levels, as well as new, productive methods for their treatment.

It should be noted that the head of the study is Alan Kaluev, professor of the Russian Academy of Sciences, member of the European Academy, leading researcher at the Research Institute of Neurosciences and Medicine, professor at St. Petersburg State University and the Sirius Science and Technology University, leading researcher at the Ural Federal University and the Moscow Institute of Physics and Technology. He is also a leading scientist in research conducted at the Novosibirsk Research Institute of Neuroscience and Medicine (laboratory of Tamara Amstislavskaya and Maria Tikhonova).



Journal

Pharmaceutics

DOI

10.3390/pharmaceutics14081751

Article Title

A Novel Laser-Based Zebrafish Model for Studying Traumatic Brain Injury and Its Molecular Targets

Article Publication Date

22-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

September 17, 2025

Study Reveals Resistance Training Enhances Nerve Health and Slows Aging Process

September 17, 2025

American College of Chest Physicians Pioneers Initiative to Expand Access to Lifesaving Noninvasive Ventilation for COPD Patients

September 17, 2025

Impact of Soccer Headers on Brain Health: Study Reveals Structural Changes in Brain Folds

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neural Circuitry Driving Autonomic Dysreflexia Unveiled

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

Widely Available, Affordable Medication Reduces Colorectal Cancer Recurrence Risk by Half

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.