• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Zap Energy charts roadmap for measuring fusion gain

Bioengineer by Bioengineer
June 5, 2023
in Chemistry
Reading Time: 4 mins read
0
Fusion's triple product
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the race to develop fusion energy, each unique approach requires its own specialized techniques to determine net energy gain, an equation balancing energy in and out that’s known by the letter Q.

Fusion's triple product

Credit: Zap Energy

In the race to develop fusion energy, each unique approach requires its own specialized techniques to determine net energy gain, an equation balancing energy in and out that’s known by the letter Q.

A new paper, published today in the journal Fusion Science and Technology, establishes the company’s method of measuring and calculating Q in Zap’s sheared-flow-stabilized Z-pinch fusion plasmas. The publication will be an important part of Zap demonstrating energy gain on the way to building a commercial fusion system.

“The way we generate fusion-grade plasmas in our devices is different from other fusion technologies so this paper helps lay the groundwork for quantifying our progress,” says Uri Shumlak, Zap Energy cofounder, Chief Science Officer and lead author on the paper.    

A distinctive approach

Like other fusion devices, Zap Energy plans to fuse hydrogen nuclei within material called plasma that must be superheated to temperatures hotter than the sun. The plasma properties can be measured to determine Q, or net energy gain, partly by calculating their triple product: how hot and how dense a plasma is, and how long it lasts.

Triple product is useful when comparing different fusion concepts, such as looking at how sheared-flow-stabilized Z-pinch devices differ from more traditional fusion devices, such as the tokamak, or other fusion approaches, and can also be used as a simplified proxy for Q.

In Zap’s case, its distinctive Z-pinch plasmas are about 100,000 times more dense than those in tokamaks and last for many microseconds. A pulsed system is being designed to create plasmas repeatedly.

Zap’s plasmas flow in a line with material at different distances from the inner-most part of the line moving at different speeds from its outer edges. This creates what’s called sheared-flow stabilization, which maintains the plasma long enough for sustained fusion reactions to occur. Sheared-flow stabilization allows Zap to confine plasmas without external magnets, but also leads to the need for uniquely suited measurements and analysis.

Measuring Q

To calculate triple product, Zap measures the temperature of the plasma, its density, and the flow velocity to determine the duration of plasma confinement. The corresponding calculation of Q is the ratio of fusion power (output) to input power and compares closely to the method used to measure gain in other magnetic confinement approaches, such as the tokamak. Inertial confinement approaches, like last year’s demonstration of Q>1 by Lawrence Livermore National Laboratory’s National Ignition Facility, produce short-lived plasmas and define Q as the ratio of fusion energy to input energy.

The main difference between power and energy is that power is the energy per unit of time. Since Zap’s plasmas are confined for timeframes that sit between traditional magnetic and inertial fusion approaches, choosing to calculate Q based on power is an important distinction.

“Publishing these technical details is very important. You can’t just drop a thermometer into a fusion plasma to see what’s happening, so instead we use a combination of direct and indirect observations that help give a picture of the conditions,” says Ben Levitt, Zap Energy Vice President of R&D. “This paper gives us a chance to make sure that other physicists agree our methodology conforms well with what’s been established over the years in the fusion community and lays out the way we plan on reporting our results in the near future.”

Z-pinch nuances

The paper includes a number of details that are specific to Zap’s fusion approach. One of the most important is accounting for the input power needed to drive the stabilizing plasma flow.

The paper also notes that for high performance pinches, it’s likely an energetic product of the fusion reactions called alpha particles will be trapped and boost fusion gain by offsetting some of the required input power.

Zap plans to correlate observations of plasma conditions with measurements of neutrons being emitted. Because neutrons are a primary product of fusion reactions, scientists would expect them to increase when fusion conditions are right and decrease when they’re not.

Zap achieved the first plasmas on its fourth-generation device, FuZE-Q, last May. R&D campaigns are now underway using FuZE-Q. The Zap team will analyze results from both FuZE-Q and its predecessor FuZE as they push toward demonstrating the first sheared-flow-stabilized Z-pinch plasmas capable of Q>1.

About Zap Energy

Zap Energy is building a low-cost, compact and scalable fusion energy platform that confines and compresses plasma without the need for expensive and complex magnetic coils. Zap’s sheared-flow-stabilized Z-pinch technology provides compelling fusion economics and requires orders of magnitude less capital than conventional approaches. Zap Energy has over one hundred team members in two facilities near Seattle and is backed by leading financial and strategic investors. Visit Zap online at zapenergy.com.



Journal

Fusion Science & Technology

DOI

10.1080/15361055.2023.2198049

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Fusion Gain and Triple Product for the Sheared-Flow-Stabilized Z Pinch

Article Publication Date

5-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Protein Chemist Secures NIH Grant to Explore Mechanisms of Inflammation

September 17, 2025
Engineering the Future: How 3D Printing is Revolutionizing Bioactive Implant Design and Materials

Engineering the Future: How 3D Printing is Revolutionizing Bioactive Implant Design and Materials

September 17, 2025

Creating Atropisomeric Macrocyclic Peptides with Quinolines

September 17, 2025

3D-Printed Fuel Cells Set to Energize Future Aerospace Innovations

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mass General Brigham Leaders Uncover Key Innovations to Transform Healthcare

New Study Finds Remote Monitoring Enhances Recovery After Cancer Surgery

Selective Presynaptic Inhibition Controls Fly Leg Proprioception

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.